Coordination reaction of manganese(III)porphyrins with pyridine as model to obtain the donor-acceptor dyads with fullerene acceptors
- Autores: Ovchenkova E.N.1, Elkhovikova A.A.2, Lomova T.N.1
- 
							Afiliações: 
							- Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
- Ivanovo State University of Chemical Technology
 
- Edição: Volume 69, Nº 1 (2024)
- Páginas: 25-32
- Seção: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://journals.eco-vector.com/0044-457X/article/view/665970
- DOI: https://doi.org/10.31857/S0044457X24010032
- EDN: https://elibrary.ru/ZZWBDY
- ID: 665970
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
In connection with the use of the pyridyl group as the bridge in the coordination of metalloporphyrins with fullerene acceptors to obtain the photoinduced electron transfer donor-acceptor systems, the study of coordination of unsubstituted pyridine molecules and the determination of the chemical structure, spectral properties, and stability of the obtained complexes becomes relevant. The coordination of pyridine molecules by manganese(III)porphyrins depending on their structure was studied in this work. In all cases, coordination ends with the formation of 1 : 1 complexes in toluene, the structure of which was established using the data of MALDI-TOF mass spectrometry and 1H NMR spectroscopy. The numerical values of the stability constants of the coordination complexes were determined; they change from 0.16 to 104 L/mol depending on the nature of the axial anion in the manganese(III)porphyrin, the structure of the tetrapyrrole macrocycle, and the functional substitution in it. The obtained data facilitate the choice of structures in the creation of hybrid materials based on metalloporphyrins by the immobilization and supramolecular chemistry methods.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
E. Ovchenkova
Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: enk@isc-ras.ru
				                					                																			                												                	Rússia, 							Ivanovo 153045						
A. Elkhovikova
Ivanovo State University of Chemical Technology
														Email: enk@isc-ras.ru
				                					                																			                												                	Rússia, 							Ivanovo, 153000						
T. Lomova
Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
														Email: enk@isc-ras.ru
				                					                																			                												                	Rússia, 							Ivanovo 153045						
Bibliografia
- Meireles A.M., Guimarães A.S., Querino G.R. et al. // Appl. Organomet. Chem. 2021. V. 35. № 11. P. e6400. https://doi.org/10.1002/aoc.6400
- Gou F., Bian Q., Pan H. et al. // J. Mol. Struct. 2023. V. 1281. P. 135116. https://doi.org/10.1016/j.molstruc.2023.135116
- Jokazi M., Mpeta L.S., Nyokong T. // J. Electroanal. Chem. 2021. V. 901. P. 115748. https://doi.org/10.1016/j.jelechem.2021.115748
- Lomova T., Tsaplev Y., Klyueva M. et al. // J. Organomet. Chem. 2021. V. 945. P. 121880. https://doi.org/10.1016/j.jorganchem.2021.121880.
- Žiniauskaitė A., Ragauskas S., Ghosh A.K. et al. // Ocul. Surf. 2019. V. 17. № 2. P. 257. https://doi.org/10.1016/j.jtos.2019.02.006.
- Zheng Y., Yuan Y., Chai Y. et al. // Biosens. Bioelectron. 2015. V. 66. P. 585. https://doi.org/10.1016/j.bios.2014.12.022.
- Lu H.-S., Wang M.-Y., Ying F.-P. et al. // Bioorg. Med. Chem. 2021. V. 35. P. 116090. https://doi.org/10.1016/j.bmc.2021.116090
- Karimipour G., Kowkabi S., Naghiha A. // Braz. Arch. Biol. Technol. 2015. V. 58. P. 431. https://doi.org/10.1590/S1516-8913201500024
- Yu K.G., Li D.H., Zhou C.H. et al. // Chine. Chem. Lett. 2009. V. 20. № 4. P. 411. https://doi.org/10.1016/j.cclet.2008.11.030
- Ashcraft K.A., Boss M.-K., Tovmasyan A. et al. // Int. J. Radiat. Oncol. Biol. Phys. 2015. V. 93. № 4. P. 892. https://doi.org/10.1016/j.ijrobp.2015.07.2283
- Weitzel D.H., Tovmasyan A., Ashcraft K.A. et al. // Mol. Cancer Ther. 2015. V. 14. № 1. P. 70. https://doi.org/10.1158/1535-7163.MCT-14-0343.
- Ezhov A.V., Aleksandrov A.E., Zhdanova K.A. et al. // Synth. Met. 2020. V. 269. P. 116567. https://doi.org/10.1016/j.synthmet.2020.116567.
- Fu B., Che Y., Yuan X. et al. // Dyes and Pigments. 2021. V. 196. P. 109754. https://doi.org/10.1016/j.dyepig.2021.109754
- Gacka E., Burdzinski G., Marciniak B. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. № 24. P. 13456. https://doi.org/10.1039/D0CP02545C
- Malyasova A.S., Smirnova P.N., Koifman O.I. // Russ. J. Inorg. Chem. 2022. V. 67. № 3. P. 388. https://doi.org/10.1134/S0036023622030093 [Малясова А.С., Смирнова П.Н., Койфман О.И. // Журн. неорган. химии. 2022. Т. 67. № 3. С. 409. https://doi.org/ 10.31857/S0044457X22030096]
- Chitta R., Badgurjar D., Reddy G. et al. // J. Porphyrins Phthalocyanines. 2021. V. 25. № 5–6. P. 469. https://doi.org/10.1142/S1088424621500395
- Janczak J. // Polyhedron. 2020. V. 178. P. 114313. https://doi.org/10.1016/j.poly.2019.114313
- Li Y., Wang G., Feng X. et al. // J. Mol. Struct. 2021. V. 1242. P. 130819. https://doi.org/10.1016/j.molstruc.2021.130819
- Nene L.C., Managa M.E., Oluwole D.O. et al. // Inorg. Chim. Acta. 2019. V. 488. P. 304. https://doi.org/10.1016/j.ica.2019.01.012
- Amati A., Cavigli P., Kahnt A. et al. // J. Phys. Chem. A. 2017. V. 121. № 22. P. 4242. https://doi.org/10.1021/acs.jpca.7b02973
- Amiri N., Taheur F.B., Chevreux S. et al. // Tetrahedron. 2017. V. 73. № 50. P. 7011. https://doi.org/10.1016/j.tet.2017.10.029
- Bichan N.G., Ovchenkova E.N., Ksenofontov A.A. et al. // J. Mol. Liq. 2021. V. 326. P. 115306. https://doi.org/ 10.1016/j.molliq.2021.115306
- Birin K.P., Abdulaeva I.A., Polivanovskaya D.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 2. P. 193. https://doi.org/10.1134/S0036023621020029 [Бирин К.П., Абдулаева И.А., Поливановская Д.А. и др. // Журн. неорган. химии. 2021. Т. 66. № 2. С. 194. https://doi.org/10.31857/S0044457X21020021]
- Znoiko S.A., Kustova T.V., Pavlova E.I. et al. // Russ. J. Gen. Chem. 2021. V. 91. № 2. P. 190. https://doi.org/10.1134/S1070363221020067 [Знойко С.А., Кустова Т.В., Павлова Е.И. и др. // Журн. общ. химии. 2021. Т. 91. № 2. С. 231. https://doi.org/10.31857/S0044460X21020062]
- Ovchenkova E.N., Bichan N.G., Kudryakova N.O. et al. // Dyes and Pigments. 2018. V. 153. P. 225. https://doi.org/10.1016/j.dyepig.2018.02.023
- Ovchenkova E.N., Klyueva M.E., Lomova T.N. // Russ. J. Inorg. Chem. 2017. V. 62. № 11. P. 1483. http://doi.org/10.1134/S0036023617110134 [Овченкова Е.Н., Клюева М.Е., Ломова Т.Н. // Журн. неорган. химии. 2017. Т. 62. № 11. С. 1490].
- Wang H., Fan Z., Cao T. et al. // J. Alloys Compd. 2021. V. 887. P. 161462. https://doi.org/10.1016/j.jallcom.2021.161462
- Li X., Li K., Wang D. et al. // J. Porphyrins Phthalocyanines. 2017. V. 21. № 3. P. 179. https://doi.org/10.1142/S1088424616501236
- Lahanas N., Kucheryavy P., Lalancette R.A. et al. // Acta Crystallogr., Sect. C. 2019. V. 75. № 3. P. 304. https://doi.org/10.1107/S2053229619001232
- Kadish K., Smith K., Guilard R. // In The Porphyrin Handbook: Biochemistry and Binding: Activation of Small Molecules. New York: Academic Press. 1999. V. 4.
- Adler A.D., Longo F.R., Kampas F. et al. // J. Inorg. Nucl. Chem. 1970. V. 32. № 7. P. 2443. https://doi.org/10.1016/0022-1902(70)80535-8
- Ovchenkova E.N., Hanack M., Lomova T.N. // Macroheterocycles. 2010. V. 3. № 1. P. 63. https://doi.org/10.6060/mhc2010.1.63
- Ovchenkova E.N., Bichan N.G., Lomova T.N. // Tetrahedron. 2015. V. 71. № 38. P. 6659. https://doi.org/10.1016/j.tet.2015.07.054
- Lomova T.N., Berezin B.D. // Russ. J. Coord. Chem. 2001. V. 27. № 2. P. 85. https://doi.org/10.1023/A:1009523115380 [Ломова Т.Н., Березин Б.Д. // Коорд. химия. 2001. Т. 27. № 2. С. 96]
- Клюева М.Е. // Дис. … докт. хим. наук. М., 2006.
- Turner P., Gunter M.J. // Inorg. Chem. 1994. V. 33. № 7. P. 1406. https://doi.org/10.1021/ic00085a032
- Ikezaki A., Nakamura M. // J. Porphyrins Phthalocyanines. 2016. V. 20. № 1–4. P. 318. https://doi.org/10.1142/S1088424616500085.
- Ikezaki A., Nakamura M. // Chem. Lett. 2005. V. 34. № 7. P. 1046. https://doi.org/10.1246/cl.2005.1046
- Fulmer G.R., Miller A.J.M., Sherden N.H. et al. // Organomet. 2010. V. 29. № 9. P. 2176. https://doi.org/10.1021/om100106e
- Ovchenkova E.N., Bichan N.G., Lyubimtsev A.V. et al. // Russ. J. Gen. Chem. 2018. V. 88. № 8. P. 1657. https://doi.org/10.1134/S1070363218080170. [Овченкова Е.Н., Бичан Н.Г., Любимцев А.В. и др. // Журн. общ. химии. 2018. Т. 88. № 8. С. 1337.]
- Аскаров К.А., Березин Б.Д., Евстигнеева Р.П. и др. // Под ред. Ениколопяна Н.С. М.: Наука, 1985. 333 с.
- Lomova T. // Appl. Organomet. Chem. 2021. V. 35. № 8. P. e6254. https://doi.org/10.1002/aoc.6254
- Ovchenkova E.N., Bichan N.G., Lomova T.N. // Russ. J. Phys. Chem. 2019. V. 93. № 2. P. 236. https://doi.org/10.1134/S0036024419010217 [Овченкова Е.Н., Бичан Н.Г., Ломова Т.Н. и др. // Журн. физ. химии. 2019. Т. 93. № 2. С. 213.]
- Lomova T.N., Zaitseva S.V., Molodkina O.V. et al. // Russ. J. Coord. Chem. 1999. V. 25. № 6. P. 397. [Ломова Т.Н., Зайцева С.В., Молодкина О.В. и др. // Коорд. химия. 1999. V. 25. № 6. P. 424.]
- Kadish K.M., Bottomley L.A., Beroiz D. // Inorg. Chem. 1978. V. 17. № 5. P. 1124. https://doi.org/10.1021/ic50183a006
- Walker F.A. // J. Am. Chem. Soc. 1973. V. 95. № 4. P. 1150. https://doi.org/10.1021/ja00785a025
- Lin X.Q., Boisselier-Cocolios B., Kadish K.M. // Inorg. Chem. 1986. V. 25. № 18. P. 3242. https://doi.org/10.1021/ic00238a030
- Ovchenkova E.N., Bichan N.G., Semeikin A.S. et al. // Macroheterocycles. 2018. V. 11. № 1. P. 79. https://doi.org/10.6060/mhc170301o
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





