Structure and thermal behavior of novel double ceriс phosphates RbCe2(PO4)3 and Rb2Ce(PO4)2 · xH2O

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

New double cerium(IV)-rubidium phosphates, RbCe2(PO4)3 and Rb2Ce(PO4)2 · хH2O, have been obtained under hydrothermal conditions. Using the crystallographic parameters of isostructural compounds, the unit cell parameters of RbCe2(PO4)3 and Rb2Ce(PO4)2 · хH2O were calculated from X-ray powder diffraction data. The following values were obtained: for RbCe2(PO4)3, a = 17.494(1) A, b = 6.7759(5) A, c = 7.9831(5) A, β = 102.875(4)°, V = 922.51(10), A3, Z = 4 (space group C2/c); for Rb2Ce(PO4)2 · хH2O, a = b = 6.8663(1) A, c = 17.6562(5) A, V = 832.42(3) A3, Z = 4 (space group I41/amd). Thermal behavior analysis of the synthesized compounds was performed, including phase composition determination of the thermolysis products. The results demonstrate that the initial structures exhibit relative thermal stability, with decomposition onset temperatures of approximately 500°C. At higher temperatures, progressive thermolysis leads to the formation of CePO4 alongside RbPO3 or Rb4P2O7, depending on conditions.

Texto integral

Acesso é fechado

Sobre autores

D. Vasilyeva

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; National Research University “Higher School of Economics”

Email: taisiya@igic.ras.ru
Rússia, Moscow, 119991; Moscow, 101000

D. Kozlov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: taisiya@igic.ras.ru
Rússia, Moscow, 119991

M. Protsenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; National Research University “Higher School of Economics”

Email: taisiya@igic.ras.ru
Rússia, Moscow, 119991; Moscow, 101000

N. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: taisiya@igic.ras.ru
Rússia, Moscow, 119991

T. Kozlova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: taisiya@igic.ras.ru
Rússia, Moscow, 119991

V. Ivanov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: taisiya@igic.ras.ru
Rússia, Moscow, 119991

Bibliografia

  1. Locock A.J. / Crystal Chemistry of Actinide Phosphates and Arsenates, Struct. Chem. Inorg. Actin. Compd. Amsterdam: Elsevier, 2007. Р. 217. https://doi.org/10.1016/B978-044452111-8/50007-7
  2. Achary S.N., Bevara S., Tyagi A.K. // Coord. Chem. Rev. 2017. V. 340. P. 266. https://doi.org/10.1016/j.ccr.2017.03.006
  3. Orlova A.I. // Radiochemistry. 2002. V. 44. № 5. P. 423. https://doi.org/10.1023/A:1021192605465
  4. Orlova A.I., Volgutov V.Y., Castro G.R. et al. // Inorg. Chem. 2009. V. 48. № 19. P. 9046. https://doi.org/10.1021/ic9013812
  5. Pet’kov V.I. // Russ. Chem. Rev. 2012. V. 81. № 7. P. 606. https://doi.org/10.1070/rc2012v081n07abeh004243
  6. Brandel V., Dacheux N. // J. Solid State Chem. 2004. V. 177. № 12. P. 4755. https://doi.org/10.1016/j.jssc.2004.08.008
  7. Yu N., Klepov V.V., Schlenz H. et al. // Cryst. Growth Des. 2017. V. 17. № 3. P. 1339. https://doi.org/10.1021/acs.cgd.6b01741
  8. Wang J., Raistrick I.D., Huggins R.A. // J. Electrochem. Soc. 1989. V. 136. № 9. P. 2529. https://doi.org/10.1149/1.2097457
  9. Lin X., Feng A., Zhang Z. et al. // J. Rare Earths. 2014. V. 32. № 10. P. 946. https://doi.org/10.1016/S1002-0721(14)60167-8
  10. Varma M., Poswal H.K., Velaga S. et al. // J. Solid State Chem. 2019. V. 276. P. 251. https://doi.org/10.1016/j.jssc.2019.05.005
  11. Allulli S., Tomassini N., Massucci M.A. // J. Chem. Soc., Dalton Trans. 1976. № 18. P. 1816. https://doi.org/10.1039/DT9760001816
  12. Dyer A., Leigh D., Ocon F.T. // J. Inorg. Nucl. Chem. 1971. V. 33. № 9. P. 3141. https://doi.org/10.1016/0022-1902(71)80080-5
  13. Dörffel M., Liebertz J. // Z. Kristallogr. — Cryst. Mater. 1990. V. 193. № 1–4. P. 155. https://doi.org/10.1524/zkri.1990.193.14.155
  14. Marsac R., Réal F., Banik N.L. et al. // Dalton Trans. 2017. V. 46. № 39. P. 13553. https://doi.org/10.1039/c7dt02251d
  15. Clearfield A. // Chem. Rev. 1988. V. 88. № 1. P. 125. https://doi.org/10.1021/cr00083a007
  16. Johansson B., Luo W., Li S. et al. // Sci. Rep. 2014. V. 4. № 1. P. 6398. https://doi.org/10.1038/srep06398
  17. Ogorodnyk I.V., Zatovsky I.V., Baumer V.N. et al. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2006. V. 62. № 12. P. 100. ttps://doi.org/10.1107/S0108270106044519
  18. Kozlova T.O., Baranchikov A.E., Ivanov V.K. // Russ. J. Inorg. Chem. 2021. V. 66. № 12. P. 1761. https://doi.org/10.1134/S003602362112010X
  19. Bevara S., Achary S.N., Patwe S.J. et al. // Dalton Trans. 2016. V. 45. № 3. P. 980. https://doi.org/10.1039/c5dt03288a
  20. Bevara S., Rajeswari B., Patwe S.J. et al. // J. Alloys Compd. 2019. V. 783. P. 310. https://doi.org/10.1016/j.jallcom.2018.12.315
  21. Kozlova T.O., Vasilyeva D.N., Kozlov D.A. et al. // Nanosyst. Physics, Chem. Math. 2023. V. 14. № 1. P. 112. https://doi.org/10.17586/2220-8054-2023-14-1-112-119
  22. Matković B., Prodić B., Sljukić M. et al. // Croat. Chem. Acta. 1968. V. 40. P. 147. https://hrcak.srce.hr/208043
  23. Lai Y., Chang Y., Wong T. et al. // Inorg. Chem. 2013. V. 52. № 23. P. 13639. https://doi.org/10.1021/ic402208s
  24. Baranchikov A.E., Kozlova T.O., Istomin S.Y. et al. // Chemistry Select. 2024. V. 9. № 17. https://doi.org/10.1002/slct.202401010
  25. Ramos-Garcés M.V., González-Villegas J., López-Cubero A. et al. // Acc. Mater. Res. 2021. V. 2. № 9. P. 793. https://doi.org/10.1021/accountsmr.1c00102
  26. Chiang S.-J., Kaduk J.A., Shaw L.L. // Mater. Chem. Phys. 2024. V. 312. P. 128656. https://doi.org/10.1016/j.matchemphys.2023.128656
  27. Bregiroux D., Popa K., Wallez G. // J. Solid State Chem. 2015. V. 230. P. 26. https://doi.org/10.1016/j.jssc.2015.06.010
  28. Neumeier S., Arinicheva Y., Ji Y. et al. // Radiochim. Acta. 2017. V. 105. № 11. P. 961. https://doi.org/10.1515/ract-2017-2819
  29. Krishnan K., Sali S.K., Singh Mudher K.D. // J. Alloys Compd. 2006. V. 414. № 1–2. P. 310. https://doi.org/10.1016/j.jallcom.2005.07.043
  30. Kozlova T.O., Popov A.L., Kolesnik I.V. et al. // J. Mater. Chem. B. 2022. V. 10. № 11. P. 1775. https://doi.org/10.1039/d1tb02604f
  31. Tronev I.V., Sheichenko E.D., Razvorotneva L.S. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 3. P. 263. https://doi.org/10.1134/S0036023622602744
  32. Salvado M.A., Pertierra P., Trobajo C. et al. // J. Am. Chem. Soc. 2007. V. 129. № 36. P. 10970. https://doi.org/10.1021/ja0710297
  33. Kolesnik I.V., Shcherbakov A.B., Kozlova T.O. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 7. P. 960. https://doi.org/10.1134/S0036023620070128
  34. Lutterotti L. // Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Interact. with Mater. Atoms. 2010. V. 268. № 3–4. P. 334. https://doi.org/10.1016/j.nimb.2009.09.053
  35. Ni Y., Hughes J.M. // Am. Mineral. 1995. V. 80. P. 21. https://doi.org/10.2138/am-1995-1-203
  36. Shekunova T.O., Istomin S.Y., Mironov A.V. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 27. P. 3242. https://doi.org/10.1002/ejic.201801182
  37. Shannon R.D., Prewitt C.T. // Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 1969. V. 25. № 5. P. 925. https://doi.org/10.1107/s0567740869003220
  38. Sidey V. // Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater. 2016. V. 72. № 4. P. 626. https://doi.org/10.1107/S2052520616008064
  39. Usman M., Morrison G., Klepov V.V. et al. // J. Solid State Chem. 2019. V. 270. P. 19. https://doi.org/10.1016/j.jssc.2018.10.033
  40. Patkare G., Shafeeq M., Sengupta A. et al. // Eur. J. Inorg. Chem. 2023. V. 26. № 17. https://doi.org/10.1002/ejic.202300140
  41. Keester K.L., Jacobs J.T. // Ferroelectrics. 1974. V. 8. № 1. P. 657. https://doi.org/10.1080/00150197408234184
  42. Bevara S., Mishra K.K., Patwe S.J. et al. // Inorg. Chem. 2017. V. 56. № 6. P. 3335. https://doi.org/10.1021/acs.inorgchem.6b02870
  43. Wang Y., Zhang X., Li L. et al. // Inorg. Chem. 2024. V. 63. № 38. P. 17340. https://doi.org/10.1021/acs.inorgchem.4c02468
  44. Kozlova T.O., Baranchikov A.E., Birichevskaya K.V.Y., et al. // // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1624. https://doi.org/10.1134/S0036023621110139
  45. Kozlova T.O., Mironov A.V., Istomin S.Y. et al. // Chem. — A Eur. J. 2020. V. 26. № 53. P. 12188. https://doi.org/10.1002/chem.202002527
  46. Nabhan E., Abd-Allah W.M., Ezz-El-Din F.M. // Results Phys. 2017. V. 7. P. 119. https://doi.org/10.1016/j.rinp.2016.12.001
  47. Ghoneim N.A., Abdelghany A.M., Abo-Naf S.M. et al. // J. Mol. Struct. 2013. V. 1035. P. 209. https://doi.org/10.1016/j.molstruc.2012.11.034
  48. Santagneli S.H., de Araujo C.C., Strojek W. et al. // J. Phys. Chem. B. 2007. V. 111. № 34. P. 10109. https://doi.org/10.1021/jp072883n
  49. Hadrich A., Lautie A., Mhiri T. et al. // Vib. Spectrosc. 2001. V. 26. P. 51. https://doi.org/10.1016/S0924-2031(01)00100-X
  50. Cruickshank D.W.J. // Acta Crystallogr. 1964. V. 17. № 6. P. 681. https://doi.org/10.1107/S0365110X64001694

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Full-profile analysis of the diffraction pattern of the product of hydrothermal treatment of the reaction mixture obtained by mixing the cerium phosphate solution with 1 M aqueous RbOH. The positions of the Bragg peaks for RbCe2(PO4)3 and monazite CePO4 (PDF2 00-032-199) are marked at the bottom. The inset shows the crystal structure of RbCe2(PO4)3 along the a-axis. CeO9 polyhedra are highlighted in yellow, PO4 tetrahedra are highlighted in gray, rubidium atoms are shown as purple spheres, and oxygen atoms are shown as red.

Baixar (61KB)
3. Fig. 2. Full-profile analysis of the diffraction pattern of the product of hydrothermal treatment of the reaction mixture obtained by mixing the cerium phosphate solution with 3 M aqueous RbOH. The positions of the Bragg peaks for Rb2Ce(PO4)2 and monazite CePO4 (PDF2 [00-032-199]) are marked at the bottom. The inset shows the crystal structure of Rb2Ce(PO4)2 along the c-axis. CeO9 polyhedra are highlighted in yellow, PO4 tetrahedra are highlighted in gray, rubidium atoms are shown as purple spheres, and oxygen atoms are shown as red.

Baixar (58KB)
4. Fig. 3. Scanning electron microscopy data for the products of hydrothermal treatment of the reaction mixture obtained by mixing the cerium phosphate solution with 1 M (a), 3 M (b) aqueous solution of RbOH.

Baixar (44KB)
5. Fig. 4. Results of thermogravimetric analysis of the products of hydrothermal treatment of the reaction mixture obtained by mixing the cerium phosphate solution with 1 M (a), 3 M (b) aqueous solution of RbOH.

Baixar (35KB)
6. Fig. 5. IR spectra of the products of hydrothermal treatment of the reaction mixture obtained by mixing the cerium phosphate solution with 1 M (a), 3 M (b) aqueous solution of RbOH, before and after annealing.

Baixar (45KB)
7. Fig. 6. Diffraction patterns of the products of hydrothermal treatment of the reaction mixture obtained by mixing the cerium phosphate solution with 1 M (a), 3 M (b) aqueous solution of RbOH, before and after annealing. The positions of the Bragg peaks for RbCe2(PO4)3, Rb2Ce(PO4)2, RbPO3 [50] and monazite CePO4 (PDF2 [00-032-199]) are marked at the bottom.

Baixar (49KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025