Structure and thermal behavior of novel double ceriс phosphates RbCe2(PO4)3 and Rb2Ce(PO4)2 · xH2O
- 作者: Vasilyeva D.N.1,2, Kozlov D.A.1, Protsenko M.R.1,2, Simonenko N.P.1, Kozlova T.O.1, Ivanov V.K.1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- National Research University “Higher School of Economics”
- 期: 卷 70, 编号 7 (2025)
- 页面: 849-857
- 栏目: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.eco-vector.com/0044-457X/article/view/689475
- DOI: https://doi.org/10.31857/S0044457X25070012
- EDN: https://elibrary.ru/JNXAHP
- ID: 689475
如何引用文章
详细
New double cerium(IV)-rubidium phosphates, RbCe2(PO4)3 and Rb2Ce(PO4)2 · хH2O, have been obtained under hydrothermal conditions. Using the crystallographic parameters of isostructural compounds, the unit cell parameters of RbCe2(PO4)3 and Rb2Ce(PO4)2 · хH2O were calculated from X-ray powder diffraction data. The following values were obtained: for RbCe2(PO4)3, a = 17.494(1) A, b = 6.7759(5) A, c = 7.9831(5) A, β = 102.875(4)°, V = 922.51(10), A3, Z = 4 (space group C2/c); for Rb2Ce(PO4)2 · хH2O, a = b = 6.8663(1) A, c = 17.6562(5) A, V = 832.42(3) A3, Z = 4 (space group I41/amd). Thermal behavior analysis of the synthesized compounds was performed, including phase composition determination of the thermolysis products. The results demonstrate that the initial structures exhibit relative thermal stability, with decomposition onset temperatures of approximately 500°C. At higher temperatures, progressive thermolysis leads to the formation of CePO4 alongside RbPO3 or Rb4P2O7, depending on conditions.
全文:

作者简介
D. Vasilyeva
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; National Research University “Higher School of Economics”
Email: taisiya@igic.ras.ru
俄罗斯联邦, Moscow, 119991; Moscow, 101000
D. Kozlov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: taisiya@igic.ras.ru
俄罗斯联邦, Moscow, 119991
M. Protsenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; National Research University “Higher School of Economics”
Email: taisiya@igic.ras.ru
俄罗斯联邦, Moscow, 119991; Moscow, 101000
N. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: taisiya@igic.ras.ru
俄罗斯联邦, Moscow, 119991
T. Kozlova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: taisiya@igic.ras.ru
俄罗斯联邦, Moscow, 119991
V. Ivanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: taisiya@igic.ras.ru
俄罗斯联邦, Moscow, 119991
参考
- Locock A.J. / Crystal Chemistry of Actinide Phosphates and Arsenates, Struct. Chem. Inorg. Actin. Compd. Amsterdam: Elsevier, 2007. Р. 217. https://doi.org/10.1016/B978-044452111-8/50007-7
- Achary S.N., Bevara S., Tyagi A.K. // Coord. Chem. Rev. 2017. V. 340. P. 266. https://doi.org/10.1016/j.ccr.2017.03.006
- Orlova A.I. // Radiochemistry. 2002. V. 44. № 5. P. 423. https://doi.org/10.1023/A:1021192605465
- Orlova A.I., Volgutov V.Y., Castro G.R. et al. // Inorg. Chem. 2009. V. 48. № 19. P. 9046. https://doi.org/10.1021/ic9013812
- Pet’kov V.I. // Russ. Chem. Rev. 2012. V. 81. № 7. P. 606. https://doi.org/10.1070/rc2012v081n07abeh004243
- Brandel V., Dacheux N. // J. Solid State Chem. 2004. V. 177. № 12. P. 4755. https://doi.org/10.1016/j.jssc.2004.08.008
- Yu N., Klepov V.V., Schlenz H. et al. // Cryst. Growth Des. 2017. V. 17. № 3. P. 1339. https://doi.org/10.1021/acs.cgd.6b01741
- Wang J., Raistrick I.D., Huggins R.A. // J. Electrochem. Soc. 1989. V. 136. № 9. P. 2529. https://doi.org/10.1149/1.2097457
- Lin X., Feng A., Zhang Z. et al. // J. Rare Earths. 2014. V. 32. № 10. P. 946. https://doi.org/10.1016/S1002-0721(14)60167-8
- Varma M., Poswal H.K., Velaga S. et al. // J. Solid State Chem. 2019. V. 276. P. 251. https://doi.org/10.1016/j.jssc.2019.05.005
- Allulli S., Tomassini N., Massucci M.A. // J. Chem. Soc., Dalton Trans. 1976. № 18. P. 1816. https://doi.org/10.1039/DT9760001816
- Dyer A., Leigh D., Ocon F.T. // J. Inorg. Nucl. Chem. 1971. V. 33. № 9. P. 3141. https://doi.org/10.1016/0022-1902(71)80080-5
- Dörffel M., Liebertz J. // Z. Kristallogr. — Cryst. Mater. 1990. V. 193. № 1–4. P. 155. https://doi.org/10.1524/zkri.1990.193.14.155
- Marsac R., Réal F., Banik N.L. et al. // Dalton Trans. 2017. V. 46. № 39. P. 13553. https://doi.org/10.1039/c7dt02251d
- Clearfield A. // Chem. Rev. 1988. V. 88. № 1. P. 125. https://doi.org/10.1021/cr00083a007
- Johansson B., Luo W., Li S. et al. // Sci. Rep. 2014. V. 4. № 1. P. 6398. https://doi.org/10.1038/srep06398
- Ogorodnyk I.V., Zatovsky I.V., Baumer V.N. et al. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2006. V. 62. № 12. P. 100. ttps://doi.org/10.1107/S0108270106044519
- Kozlova T.O., Baranchikov A.E., Ivanov V.K. // Russ. J. Inorg. Chem. 2021. V. 66. № 12. P. 1761. https://doi.org/10.1134/S003602362112010X
- Bevara S., Achary S.N., Patwe S.J. et al. // Dalton Trans. 2016. V. 45. № 3. P. 980. https://doi.org/10.1039/c5dt03288a
- Bevara S., Rajeswari B., Patwe S.J. et al. // J. Alloys Compd. 2019. V. 783. P. 310. https://doi.org/10.1016/j.jallcom.2018.12.315
- Kozlova T.O., Vasilyeva D.N., Kozlov D.A. et al. // Nanosyst. Physics, Chem. Math. 2023. V. 14. № 1. P. 112. https://doi.org/10.17586/2220-8054-2023-14-1-112-119
- Matković B., Prodić B., Sljukić M. et al. // Croat. Chem. Acta. 1968. V. 40. P. 147. https://hrcak.srce.hr/208043
- Lai Y., Chang Y., Wong T. et al. // Inorg. Chem. 2013. V. 52. № 23. P. 13639. https://doi.org/10.1021/ic402208s
- Baranchikov A.E., Kozlova T.O., Istomin S.Y. et al. // Chemistry Select. 2024. V. 9. № 17. https://doi.org/10.1002/slct.202401010
- Ramos-Garcés M.V., González-Villegas J., López-Cubero A. et al. // Acc. Mater. Res. 2021. V. 2. № 9. P. 793. https://doi.org/10.1021/accountsmr.1c00102
- Chiang S.-J., Kaduk J.A., Shaw L.L. // Mater. Chem. Phys. 2024. V. 312. P. 128656. https://doi.org/10.1016/j.matchemphys.2023.128656
- Bregiroux D., Popa K., Wallez G. // J. Solid State Chem. 2015. V. 230. P. 26. https://doi.org/10.1016/j.jssc.2015.06.010
- Neumeier S., Arinicheva Y., Ji Y. et al. // Radiochim. Acta. 2017. V. 105. № 11. P. 961. https://doi.org/10.1515/ract-2017-2819
- Krishnan K., Sali S.K., Singh Mudher K.D. // J. Alloys Compd. 2006. V. 414. № 1–2. P. 310. https://doi.org/10.1016/j.jallcom.2005.07.043
- Kozlova T.O., Popov A.L., Kolesnik I.V. et al. // J. Mater. Chem. B. 2022. V. 10. № 11. P. 1775. https://doi.org/10.1039/d1tb02604f
- Tronev I.V., Sheichenko E.D., Razvorotneva L.S. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 3. P. 263. https://doi.org/10.1134/S0036023622602744
- Salvado M.A., Pertierra P., Trobajo C. et al. // J. Am. Chem. Soc. 2007. V. 129. № 36. P. 10970. https://doi.org/10.1021/ja0710297
- Kolesnik I.V., Shcherbakov A.B., Kozlova T.O. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 7. P. 960. https://doi.org/10.1134/S0036023620070128
- Lutterotti L. // Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Interact. with Mater. Atoms. 2010. V. 268. № 3–4. P. 334. https://doi.org/10.1016/j.nimb.2009.09.053
- Ni Y., Hughes J.M. // Am. Mineral. 1995. V. 80. P. 21. https://doi.org/10.2138/am-1995-1-203
- Shekunova T.O., Istomin S.Y., Mironov A.V. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 27. P. 3242. https://doi.org/10.1002/ejic.201801182
- Shannon R.D., Prewitt C.T. // Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 1969. V. 25. № 5. P. 925. https://doi.org/10.1107/s0567740869003220
- Sidey V. // Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater. 2016. V. 72. № 4. P. 626. https://doi.org/10.1107/S2052520616008064
- Usman M., Morrison G., Klepov V.V. et al. // J. Solid State Chem. 2019. V. 270. P. 19. https://doi.org/10.1016/j.jssc.2018.10.033
- Patkare G., Shafeeq M., Sengupta A. et al. // Eur. J. Inorg. Chem. 2023. V. 26. № 17. https://doi.org/10.1002/ejic.202300140
- Keester K.L., Jacobs J.T. // Ferroelectrics. 1974. V. 8. № 1. P. 657. https://doi.org/10.1080/00150197408234184
- Bevara S., Mishra K.K., Patwe S.J. et al. // Inorg. Chem. 2017. V. 56. № 6. P. 3335. https://doi.org/10.1021/acs.inorgchem.6b02870
- Wang Y., Zhang X., Li L. et al. // Inorg. Chem. 2024. V. 63. № 38. P. 17340. https://doi.org/10.1021/acs.inorgchem.4c02468
- Kozlova T.O., Baranchikov A.E., Birichevskaya K.V.Y., et al. // // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1624. https://doi.org/10.1134/S0036023621110139
- Kozlova T.O., Mironov A.V., Istomin S.Y. et al. // Chem. — A Eur. J. 2020. V. 26. № 53. P. 12188. https://doi.org/10.1002/chem.202002527
- Nabhan E., Abd-Allah W.M., Ezz-El-Din F.M. // Results Phys. 2017. V. 7. P. 119. https://doi.org/10.1016/j.rinp.2016.12.001
- Ghoneim N.A., Abdelghany A.M., Abo-Naf S.M. et al. // J. Mol. Struct. 2013. V. 1035. P. 209. https://doi.org/10.1016/j.molstruc.2012.11.034
- Santagneli S.H., de Araujo C.C., Strojek W. et al. // J. Phys. Chem. B. 2007. V. 111. № 34. P. 10109. https://doi.org/10.1021/jp072883n
- Hadrich A., Lautie A., Mhiri T. et al. // Vib. Spectrosc. 2001. V. 26. P. 51. https://doi.org/10.1016/S0924-2031(01)00100-X
- Cruickshank D.W.J. // Acta Crystallogr. 1964. V. 17. № 6. P. 681. https://doi.org/10.1107/S0365110X64001694
补充文件
