Quantum-chemical simulation of molecular hydrogen abstraction from the ZnMg(BH4)4 · 4NH3 bicationic complex
- Autores: Zyubin A.S.1, Zyubina T.S.1, Kravchenko O.V.1,2, Solovev M.V.1, Vasiliev V.P.1,2, Zaitsev A.A.1, Shikhovtsev A.V.1,2, Dobrovol’sky Y.A.1,2
-
Afiliações:
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
- Center of Hydrogen Energy (Sistema PJSFC)
- Edição: Volume 70, Nº 7 (2025)
- Páginas: 927-944
- Seção: ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ
- URL: https://journals.eco-vector.com/0044-457X/article/view/689602
- DOI: https://doi.org/10.31857/S0044457X25070092
- EDN: https://elibrary.ru/JOJEEN
- ID: 689602
Citar
Texto integral



Resumo
Within the framework of the cluster approach using the 6-31G* basis set and the hybrid density functional (B3LYP), was modeled successive abstraction of H2 from the [ZnMg(BH4)4 4NH3] and [Zn2Mg2(BH4)8⋅8NH3] complexes. It was found that to start the dehydrogenation process, it is necessary to overcome the energy barrier of ~1.25 eV, then the process proceeds with the release of energy until about 70% of the available H2 is extracted, for a higher degree of conversion additional energy costs will be required. The cleavage of H2 molecules occurs through a number of intermediate structures of varying complexity with the significant participation of metal cations and the formation of fragments of chains based on B-N bonds containing fragments of N-H and B-H, which can be detected by IR spectroscopy, when dehydrogenation is stopped.
Texto integral

Sobre autores
A. Zyubin
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Autor responsável pela correspondência
Email: aszyubin@bk.ru
Rússia, Chernogolovka, Moscow region, 142432
T. Zyubina
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: aszyubin@bk.ru
Rússia, Chernogolovka, Moscow region, 142432
O. Kravchenko
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Center of Hydrogen Energy (Sistema PJSFC)
Email: aszyubin@bk.ru
Rússia, Chernogolovka, Moscow region, 142432; Chernogolovka, Moscow region, 142432
M. Solovev
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: aszyubin@bk.ru
Rússia, Chernogolovka, Moscow region, 142432
V. Vasiliev
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Center of Hydrogen Energy (Sistema PJSFC)
Email: aszyubin@bk.ru
Rússia, Chernogolovka, Moscow region, 142432; Chernogolovka, Moscow region, 142432
A. Zaitsev
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: aszyubin@bk.ru
Rússia, Chernogolovka, Moscow region, 142432
A. Shikhovtsev
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Center of Hydrogen Energy (Sistema PJSFC)
Email: aszyubin@bk.ru
Rússia, Chernogolovka, Moscow region, 142432; Chernogolovka, Moscow region, 142432
Yu. Dobrovol’sky
Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Center of Hydrogen Energy (Sistema PJSFC)
Email: aszyubin@bk.ru
Rússia, Chernogolovka, Moscow region, 142432; Chernogolovka, Moscow region, 142432
Bibliografia
- Ritter A., Ebner A.D., Wang J., Zidan R. // Mater. Today. 2003. V. 6. P. 18.
- Schlapbach L., Zuttel A. // Nature. 2001. V. 414. P. 353.
- Züttel A. // Mater. Today. 2003. V. 6. P. 24.
- Orimo S.-I., Nakamori Y., Eliseo J.R. et al. // Chem. Rev. 2007. V. 107. P. 4111.
- Ouyang L., Chen K., Jiang J. et al. // J. Alloys Compd. 2020. V. 829. P. 154597.
- Sakintuna B., Lamari-Darkrim F., Hirscher M. // Int. J. Hydrogen Energy. 2007. V. 32. P. 1121.
- Diwan M., Diakov V., Shafirovich E., Varma A. // Int. J. Hydrogen Energy. 2008. V. 33. P. 1135.
- Guo Y., Yu X., Sun W. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 1087.
- Richter B., Ravnsbæk D.B., Tumanov N. et al. // Dalton Trans. 2015. V. 44. P. 3988.
- Paskevicius M., Jepsen L.H., Schouwink P. et al. // Chem. Soc. Rev. 2017. V. 46. P. 1565.
- Wu R., Ren Z., Zhang X. et al. // J. Phys. Chem. Lett. 2019. V. 10. P. 1872.
- Kravchenko O.V., Kravchenko S.E., Semenenko K.N. // J. Gen. Chem. USSR. 1990. V. 60. P. 2641.
- Johnson S.R., David W.I.F., Royse D.M. et al. // Chem. Asian J. 2009. V. 4. P. 849.
- Zhao S., Xu B., Sun N. et al. // Int. J. Hydrogen Energy. 2015. V. 40. P. 8721.
- Zavorotynska O., El-Kharbachi A., Deledda S. et al. // Int. J. Hydrogen Energy. 2016. V. 41. P. 14387. http://dx.doi.org/10.1016/j.ijhydene.2016.02.015
- Zyubin A.S., Zyubina T.S., Kravchenko O.V. et al. // Russ. J. Inorg. Chem. 2016. V. 61. P. 731. https://doi.org/10.1134/S0036023616060231
- Zyubin A.S., Zyubina T.S., Kravchenko O.V. et al. // Russ. J. Inorg. Chem. 2018. V. 63. P. 201. https://doi.org/10.1134/S0036023618020237
- Solovev M.V., Chashchikhin O.V., Dorovatovskii P.V. et al. // J. Power Sources. 2018. V. 377. P. 93. https://doi.org/10.1016/j.jpowsour.2017.11.090
- Guo Y., Xia G., Zhu Y. et al. // Chem. Commun. 2010. V. 46. P. 2599. https://doi.org/10.1039/B924057H
- Chu H., Wu G., Xiong Z. et al. // Chem. Mater. 2010. V. 22. P. 6021. https://doi.org/10.1021/cm1023234.
- Guo Y., Yu X., Sun W. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 1087. https://doi.org/10.1002/anie.201006188.
- Vasiliev V.P., Kravchenko O.V., Soloviev M.V. et al. // Int. J. Hydrogen Energy. 2022. V. 47. P. 35320. https://doi.org/10.1016/j.ijhydene.2022.08.100.
- Zhu Y., Shen S., Yang X-S. et al. // ACS Sustainable Chem. Eng. 2023. V. 11. P. 8931. https://doi.org/10.1021/acssuschemeng.3c01073.
- Solovev M.V., Vasiliev V.P., Shilov G.V. et al. // Russ. Chem. Bull. 2024. V. 73. P. 906. https://doi.org/10.1007/s11172-024-4204-z.
- Yang Y., Liu Y., Zhang Y. et al. // J. Alloys Compd. 2014. V. 585. P. 674. http://dx.doi.org/10.1016/j.jallcom.2013.09.208
- Soloveichik G., Her J.-H., Stephens P.W. et al. // Inorg. Chem. 2008. V. 47. P. 4290. https://doi.org/10.1021/ic7023633
- Guo Y., Wu H., Zhou W., Yu X. // J. Amer. Chem. Soc. 2011. V. 133. P. 4690. http://dx.doi.org/10.1021/ja1105893
- Yang Y., Liu Y., Li Y. et al. // Chem. Asian J. 2013. V. 8. P. 476. https://doi.org/10.1002/asia.201200970
- Yang Y., Liu Y., Li Y. et al. // J. Phys. Chem. C. 2013. V. 117. P. 16326. http://dx.doi.org/10.1021/jp404424m
- Jepsen L.H., Ley M.B. et al. // Chem-Sus Chem. 2015. V. 8. P. 1452. https://doi.org/10.1002/cssc.201500029
- Yan Y., Dononelli W., Jorgensen M. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 9204. https://doi.org/10.1039/d0cp00158a
- Chen X., Yu X. // J. Phys. Chem. C. 2012. V. 116. P. 11900. http://dx.doi.org/10.1021/jp301986k
- Yuan P.-F., Wang F., Sun Q. et al. // Int. J. Hydrogen Energy. 2013. V. 38. P. 2836. http://dx.doi.org/10.1016/j.ijhydene.2012.12.075
- Wang K., Zhang J.-G., Lang X.-Q. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 7015. https://doi.org/10.1039/C5CP06808H
- Chen X., Li R., Xia G. et al. // RSC Adv. 2017. V. 7. P. 31027. https://doi.org/10.1039/c7ra05322c
- Chen X., Zou W., Li R. et al. // J. Phys. Chem. C. 2018. V. 122. P. 4241. https://doi.org/10.1021/acs.jpcc.8b00455
- Vasiliev V.P., Solovev M.V., Kravchenko O.V. et al. // J. Alloys Compd. 2024. V. 1008. P. 176732. https://doi.org/10.1016/j.jallcom.2024.176738.
- Nickels E.A., Jones M.O., David W.I.F. et al. // Angew. Chem. Int. Ed. 2008. V. 47. P. 2817. https://doi.org/10.1002/anie.200704949.
- Ravnsbæk D., Filinchuk Y., Cerenius Y. et al. // Angew. Chem. Int. Ed. 2009. V. 48. P. 6659. https://doi.org/10.1002/anie.200903030.
- Lindemann I., Ferrer R.D., Dunsch L. et al. // Chem. Eur. J. 2010. V. 16. P. 8707. https://doi.org/10.1002/chem.201000831.
- Černy R., Kim K.C., Penin N. et al. // J. Phys. Chem. C. 2010. V. 114. P. 19127. https://doi.org/10.1021/jp105957r.
- Fang Z.Z., Kang X.D., Wang P. et al. // J. Alloys Compd. 2010. V. 491. P. L1. https://doi.org/10.1016/j.jallcom.2009.10.149.
- Fang Z.Z., Kang X.D., Luo J.H. et al. // J. Phys. Chem. C. 2010. V. 114. P. 22736. https://doi.org/10.1021/jp109260g.
- Aidhy D.S., Wolverton C. // Phys. Rev. B. 2011. V. 83. P. 144111. https://doi.org/10.1103/PhysRevB.83.144111.
- Zyubin A.S., Zyubina T.S., Kravchenko O.V. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 867. https://doi.org/10.1134/S0036023624600874
- Zyubin A.S., Zyubina T.S., Kravchenko O.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1591.
- Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648. https://doi.org/10.1063/1.464913
- Johnson B.J., Gill P.M.W., Pople J.A. // J. Chem. Phys. 1993. V. 98. P. 5612. https://doi.org/10.1063/1.464906
- Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford CT, 2010. https://doi.org/10.1063/1.464906
Arquivos suplementares
