Quantum-chemical simulation of molecular hydrogen abstraction from the ZnMg(BH4)4 · 4NH3 bicationic complex

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Within the framework of the cluster approach using the 6-31G* basis set and the hybrid density functional (B3LYP), was modeled successive abstraction of H2 from the [ZnMg(BH4)4 4NH3] and [Zn2Mg2(BH4)8⋅8NH3] complexes. It was found that to start the dehydrogenation process, it is necessary to overcome the energy barrier of ~1.25 eV, then the process proceeds with the release of energy until about 70% of the available H2 is extracted, for a higher degree of conversion additional energy costs will be required. The cleavage of H2 molecules occurs through a number of intermediate structures of varying complexity with the significant participation of metal cations and the formation of fragments of chains based on B-N bonds containing fragments of N-H and B-H, which can be detected by IR spectroscopy, when dehydrogenation is stopped.

Full Text

Restricted Access

About the authors

A. S. Zyubin

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: aszyubin@bk.ru
Russian Federation, Chernogolovka, Moscow region, 142432

T. S. Zyubina

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: aszyubin@bk.ru
Russian Federation, Chernogolovka, Moscow region, 142432

O. V. Kravchenko

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Center of Hydrogen Energy (Sistema PJSFC)

Email: aszyubin@bk.ru
Russian Federation, Chernogolovka, Moscow region, 142432; Chernogolovka, Moscow region, 142432

M. V. Solovev

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: aszyubin@bk.ru
Russian Federation, Chernogolovka, Moscow region, 142432

V. P. Vasiliev

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Center of Hydrogen Energy (Sistema PJSFC)

Email: aszyubin@bk.ru
Russian Federation, Chernogolovka, Moscow region, 142432; Chernogolovka, Moscow region, 142432

A. A. Zaitsev

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: aszyubin@bk.ru
Russian Federation, Chernogolovka, Moscow region, 142432

A. V. Shikhovtsev

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Center of Hydrogen Energy (Sistema PJSFC)

Email: aszyubin@bk.ru
Russian Federation, Chernogolovka, Moscow region, 142432; Chernogolovka, Moscow region, 142432

Yu. A. Dobrovol’sky

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Center of Hydrogen Energy (Sistema PJSFC)

Email: aszyubin@bk.ru
Russian Federation, Chernogolovka, Moscow region, 142432; Chernogolovka, Moscow region, 142432

References

  1. Ritter A., Ebner A.D., Wang J., Zidan R. // Mater. Today. 2003. V. 6. P. 18.
  2. Schlapbach L., Zuttel A. // Nature. 2001. V. 414. P. 353.
  3. Züttel A. // Mater. Today. 2003. V. 6. P. 24.
  4. Orimo S.-I., Nakamori Y., Eliseo J.R. et al. // Chem. Rev. 2007. V. 107. P. 4111.
  5. Ouyang L., Chen K., Jiang J. et al. // J. Alloys Compd. 2020. V. 829. P. 154597.
  6. Sakintuna B., Lamari-Darkrim F., Hirscher M. // Int. J. Hydrogen Energy. 2007. V. 32. P. 1121.
  7. Diwan M., Diakov V., Shafirovich E., Varma A. // Int. J. Hydrogen Energy. 2008. V. 33. P. 1135.
  8. Guo Y., Yu X., Sun W. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 1087.
  9. Richter B., Ravnsbæk D.B., Tumanov N. et al. // Dalton Trans. 2015. V. 44. P. 3988.
  10. Paskevicius M., Jepsen L.H., Schouwink P. et al. // Chem. Soc. Rev. 2017. V. 46. P. 1565.
  11. Wu R., Ren Z., Zhang X. et al. // J. Phys. Chem. Lett. 2019. V. 10. P. 1872.
  12. Kravchenko O.V., Kravchenko S.E., Semenenko K.N. // J. Gen. Chem. USSR. 1990. V. 60. P. 2641.
  13. Johnson S.R., David W.I.F., Royse D.M. et al. // Chem. Asian J. 2009. V. 4. P. 849.
  14. Zhao S., Xu B., Sun N. et al. // Int. J. Hydrogen Energy. 2015. V. 40. P. 8721.
  15. Zavorotynska O., El-Kharbachi A., Deledda S. et al. // Int. J. Hydrogen Energy. 2016. V. 41. P. 14387. http://dx.doi.org/10.1016/j.ijhydene.2016.02.015
  16. Zyubin A.S., Zyubina T.S., Kravchenko O.V. et al. // Russ. J. Inorg. Chem. 2016. V. 61. P. 731. https://doi.org/10.1134/S0036023616060231
  17. Zyubin A.S., Zyubina T.S., Kravchenko O.V. et al. // Russ. J. Inorg. Chem. 2018. V. 63. P. 201. https://doi.org/10.1134/S0036023618020237
  18. Solovev M.V., Chashchikhin O.V., Dorovatovskii P.V. et al. // J. Power Sources. 2018. V. 377. P. 93. https://doi.org/10.1016/j.jpowsour.2017.11.090
  19. Guo Y., Xia G., Zhu Y. et al. // Chem. Commun. 2010. V. 46. P. 2599. https://doi.org/10.1039/B924057H
  20. Chu H., Wu G., Xiong Z. et al. // Chem. Mater. 2010. V. 22. P. 6021. https://doi.org/10.1021/cm1023234.
  21. Guo Y., Yu X., Sun W. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 1087. https://doi.org/10.1002/anie.201006188.
  22. Vasiliev V.P., Kravchenko O.V., Soloviev M.V. et al. // Int. J. Hydrogen Energy. 2022. V. 47. P. 35320. https://doi.org/10.1016/j.ijhydene.2022.08.100.
  23. Zhu Y., Shen S., Yang X-S. et al. // ACS Sustainable Chem. Eng. 2023. V. 11. P. 8931. https://doi.org/10.1021/acssuschemeng.3c01073.
  24. Solovev M.V., Vasiliev V.P., Shilov G.V. et al. // Russ. Chem. Bull. 2024. V. 73. P. 906. https://doi.org/10.1007/s11172-024-4204-z.
  25. Yang Y., Liu Y., Zhang Y. et al. // J. Alloys Compd. 2014. V. 585. P. 674. http://dx.doi.org/10.1016/j.jallcom.2013.09.208
  26. Soloveichik G., Her J.-H., Stephens P.W. et al. // Inorg. Chem. 2008. V. 47. P. 4290. https://doi.org/10.1021/ic7023633
  27. Guo Y., Wu H., Zhou W., Yu X. // J. Amer. Chem. Soc. 2011. V. 133. P. 4690. http://dx.doi.org/10.1021/ja1105893
  28. Yang Y., Liu Y., Li Y. et al. // Chem. Asian J. 2013. V. 8. P. 476. https://doi.org/10.1002/asia.201200970
  29. Yang Y., Liu Y., Li Y. et al. // J. Phys. Chem. C. 2013. V. 117. P. 16326. http://dx.doi.org/10.1021/jp404424m
  30. Jepsen L.H., Ley M.B. et al. // Chem-Sus Chem. 2015. V. 8. P. 1452. https://doi.org/10.1002/cssc.201500029
  31. Yan Y., Dononelli W., Jorgensen M. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 9204. https://doi.org/10.1039/d0cp00158a
  32. Chen X., Yu X. // J. Phys. Chem. C. 2012. V. 116. P. 11900. http://dx.doi.org/10.1021/jp301986k
  33. Yuan P.-F., Wang F., Sun Q. et al. // Int. J. Hydrogen Energy. 2013. V. 38. P. 2836. http://dx.doi.org/10.1016/j.ijhydene.2012.12.075
  34. Wang K., Zhang J.-G., Lang X.-Q. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 7015. https://doi.org/10.1039/C5CP06808H
  35. Chen X., Li R., Xia G. et al. // RSC Adv. 2017. V. 7. P. 31027. https://doi.org/10.1039/c7ra05322c
  36. Chen X., Zou W., Li R. et al. // J. Phys. Chem. C. 2018. V. 122. P. 4241. https://doi.org/10.1021/acs.jpcc.8b00455
  37. Vasiliev V.P., Solovev M.V., Kravchenko O.V. et al. // J. Alloys Compd. 2024. V. 1008. P. 176732. https://doi.org/10.1016/j.jallcom.2024.176738.
  38. Nickels E.A., Jones M.O., David W.I.F. et al. // Angew. Chem. Int. Ed. 2008. V. 47. P. 2817. https://doi.org/10.1002/anie.200704949.
  39. Ravnsbæk D., Filinchuk Y., Cerenius Y. et al. // Angew. Chem. Int. Ed. 2009. V. 48. P. 6659. https://doi.org/10.1002/anie.200903030.
  40. Lindemann I., Ferrer R.D., Dunsch L. et al. // Chem. Eur. J. 2010. V. 16. P. 8707. https://doi.org/10.1002/chem.201000831.
  41. Černy R., Kim K.C., Penin N. et al. // J. Phys. Chem. C. 2010. V. 114. P. 19127. https://doi.org/10.1021/jp105957r.
  42. Fang Z.Z., Kang X.D., Wang P. et al. // J. Alloys Compd. 2010. V. 491. P. L1. https://doi.org/10.1016/j.jallcom.2009.10.149.
  43. Fang Z.Z., Kang X.D., Luo J.H. et al. // J. Phys. Chem. C. 2010. V. 114. P. 22736. https://doi.org/10.1021/jp109260g.
  44. Aidhy D.S., Wolverton C. // Phys. Rev. B. 2011. V. 83. P. 144111. https://doi.org/10.1103/PhysRevB.83.144111.
  45. Zyubin A.S., Zyubina T.S., Kravchenko O.V. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 867. https://doi.org/10.1134/S0036023624600874
  46. Zyubin A.S., Zyubina T.S., Kravchenko O.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1591.
  47. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648. https://doi.org/10.1063/1.464913
  48. Johnson B.J., Gill P.M.W., Pople J.A. // J. Chem. Phys. 1993. V. 98. P. 5612. https://doi.org/10.1063/1.464906
  49. Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford CT, 2010. https://doi.org/10.1063/1.464906

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Configurations of the MgZn(BH4)4 4NH3 system that arise upon removal of up to four H2 molecules. The number after the letter D denotes the number of H2 molecules removed.

Download (97KB)
3. Fig. 2. Gibbs energies for configurations of the ZnMg(BH4)4 4NH3 system that arise upon removal of up to four (D0–D4) and six (D4–D6) H2 molecules.

Download (39KB)
4. Fig. 3. Configurations of the MgZn(BH4)4 4NH3 system that arise upon removal of four to six H2 molecules.

Download (88KB)
5. Fig. 4. Configurations of the MgZn(BH4)4 4NH3 system that arise upon removal of six to nine H2 molecules.

Download (88KB)
6. Fig. 5. Gibbs energies for configurations of the ZnMg(BH4)4 4NH3 system arising upon removal of six to nine (D6–D9) H2 molecules.

Download (19KB)
7. Fig. 6. Configurations of the Mg2Zn2(BH4)8 8NH3 system arising upon removal of sixteen to seventeen H2 molecules.

Download (108KB)
8. Fig. 7. Gibbs energies for configurations of the Zn2Mg2(BH4)8 8NH3 system arising upon removal of sixteen to nineteen (Q16–Q19) H2 molecules.

Download (39KB)
9. Fig. 8. Configurations of the Mg2Zn2(BH4)8 8NH3 system arising upon removal of seventeen to eighteen H2 molecules.

Download (99KB)
10. Fig. 9. Configurations of the Mg2Zn2(BH4)8 · 8NH3 system arising upon removal of nineteen to twenty-one H2 molecules.

Download (104KB)
11. Fig. 10. Gibbs energies for configurations of the Zn2Mg2(BH4)8 · 8NH3 system arising upon removal of nineteen to twenty-three (Q19–Q23) H2 molecules.

Download (45KB)
12. Fig. 11. Configurations of the Mg2Zn2(BH4)8 · 8NH3 system arising upon removal of twenty-one to twenty-three H2 molecules.

Download (103KB)
13. Fig. 12. Configurations of the Mg2Zn2(BH4)8 · 8NH3 system arising upon removal of twenty-three to twenty-five H2 molecules.

Download (92KB)
14. Fig. 13. Gibbs energies for configurations of the Zn2Mg2(BH4)8 · 8NH3 system arising upon removal of twenty-three to twenty-five (Q23–Q25) H2 molecules.

Download (25KB)
15. Fig. 14. Configurations of the Mg2Zn2(BH4)8 · 8NH3 system arising upon removal of twenty-four to twenty-six H2 molecules.

Download (63KB)

Copyright (c) 2025 Russian Academy of Sciences