Synthesis and Functionalization of Unsymmetrical Terbium(III) Bis-Phthalocyaninates, Promising Components of Hybrid Magnetic Materials
- 作者: Yagodin A.V.1, Kormshchikov I.D.2, Martynov A.G.1, Gorbunova Y.G.1,3, Tsivadze A.Y.1,3
- 
							隶属关系: 
							- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
- Faculty of Chemistry, Moscow State University
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
 
- 期: 卷 68, 编号 9 (2023)
- 页面: 1146-1153
- 栏目: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://journals.eco-vector.com/0044-457X/article/view/666208
- DOI: https://doi.org/10.31857/S0044457X23600706
- EDN: https://elibrary.ru/WRKOIB
- ID: 666208
如何引用文章
详细
A new unsymmetrical terbium bis-Phthalocyaninate Tb(A7B) with one terminal aliphatic OH group was obtained by template cross-condensation of diethoxyphthalonitrile (A) and phthalonitrile (B) functionalized with diethylene glycol moiety. The subsequent functionalization of the complex included the successive replacement of this OH group by the iodide and thioacetate substituents. The synthesized complexes can act as components of hybrid materials upon immobilization on surfaces of various nature.
作者简介
A. Yagodin
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
														Email: martynov@phyche.ac.ru
				                					                																			                												                								119071, Moscow, Russia						
I. Kormshchikov
Faculty of Chemistry, Moscow State University
														Email: martynov@phyche.ac.ru
				                					                																			                												                								119991, Moscow, Russia						
A. Martynov
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
														Email: martynov@phyche.ac.ru
				                					                																			                												                								119071, Moscow, Russia						
Yu. Gorbunova
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: martynov@phyche.ac.ru
				                					                																			                												                								119071, Moscow, Russia; 119991, Moscow, Russia						
A. Tsivadze
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
							编辑信件的主要联系方式.
							Email: martynov@phyche.ac.ru
				                					                																			                												                								119991, Moscow, Russia; 119991, Moscow, Russia						
参考
- Coronado E. // Nat. Rev. Mater. 2019. V. 5. № 2. P. 87. https://doi.org/10.1038/s41578-019-0146-8
- Yamashita M. // Bull. Chem. Soc. Jpn. 2021. V. 94. № 1. P. 209. https://doi.org/10.1246/bcsj.20200257
- Wang H., Wang B.W., Bian Y. et al. // Coord. Chem. Rev. 2016. V. 306. № P1. P. 195. https://doi.org/10.1016/j.ccr.2015.07.004
- Martynov A.G., Horii Y., Katoh K. et al. // Chem. Soc. Rev. 2022. V. 51. № 22. P. 9262. https://doi.org/10.1039/d2cs00559j
- Basova T.V., Ray A.K. // ECS J. Solid State Sci. Technol. 2020. V. 9. № 6. P. 061001. https://doi.org/10.1149/2162-8777/ab9fe8
- Koifman O.I., Ageeva T.A., Beletskaya I.P. et al. // Macroheterocycles 2020. V. 13. № 4. P. 311. https://doi.org/10.6060/mhc200814k
- Chan W.L., Xie C., Lo W.S. et al. // Chem. Soc. Rev. 2021. V. 50. № 21. P. 12189. https://doi.org/10.1039/c9cs00828d
- Bouvet M., Gaudillat P., Suisse J.-M.M. // J. Porphyr. Phthalocyanines 2013. V. 17. № 08n09. P. 628. https://doi.org/10.1142/S1088424613300048
- Tanaka D., Inose T., Tanaka H. et al. // Chem. Commun. 2012. V. 48. № 63. P. 7796. https://doi.org/10.1039/c2cc00086e
- Gonidec M., Davies E.S., McMaster J. et al. // J. Am. Chem. Soc. 2010. V. 132. № 6. P. 1756. https://doi.org/10.1021/ja9095895
- Konarev D.V., Khasanov S.S., Batov M.S. et al. // Inorg. Chem. 2019. V. 58. № 8. P. 5058. https://doi.org/10.1021/acs.inorgchem.9b00131
- Horii Y., Kishiue S., Damjanović M. et al. // Chem. – A Eur. J. 2018. V. 24. № 17. P. 4320. https://doi.org/10.1002/chem.201705378
- Katoh K., Yasuda N., Damjanović M. et al. // Chem. – A Eur. J. 2020. V. 26. № 21. P. 4805. https://doi.org/10.1002/chem.201905400
- Stepanow S., Honolka J., Gambardella P. et al. // J. Am. Chem. Soc. 2010. V. 132. № 34. P. 11900. https://doi.org/10.1021/ja105124r
- Zhang Y., Wang Y., Liao P. et al. // ACS Nano 2018. V. 12. № 3. P. 2991. https://doi.org/10.1021/acsnano.8b00751
- Malavolti L., Poggini L., Margheriti L. et al. // Chem. Commun. 2013. V. 49. № 98. P. 11506. https://doi.org/10.1039/c3cc46868b
- Urdampilleta M., Nguyen N.V., Cleuziou J.P. et al. // Int. J. Mol. Sci. 2011. V. 12. № 10. P. 6656. https://doi.org/10.3390/ijms12106656
- Gómez-Segura J., Díez-Pérez I., Ishikawa N. et al. // Chem. Commun. 2006. № 27. P. 2866. https://doi.org/10.1039/B606276H
- Katoh K., Sato J., Nakanishi R. et al. // J. Mater. Chem. C 2021. V. 9. № 33. P. 10697. https://doi.org/10.1039/D1TC01026C
- Schweikart K.-H., Malinovskii V.L., Diers J.R. et al. // J. Mater. Chem. 2002. V. 12. № 4. P. 808. https://doi.org/10.1039/b108520d
- Britton J., Martynov A.G., Oluwole D.O. et al. // J. Porphyr. Phthalocyanines 2016. V. 20. P. 1296. https://doi.org/10.1142/S1088424616501042
- Oluwole D.O., Yagodin A.V., Britton J. et al. // Dalton Trans. 2017. V. 46. № 46. P. 16190. https://doi.org/10.1039/C7DT03867D
- Managa M., Khene S., Britton J. et al. // J. Porphyr. Phthalocyanines 2018. V. 22. № 01n03. P. 137. https://doi.org/10.1142/S1088424618500128
- Oluwole D.O., Yagodin A.V., Mkhize N.C. et al. // Chem. Eur. J. 2017. V. 23. № 12. P. 2820. https://doi.org/10.1002/chem.201604401
- Iqbal Z., Lyubimtsev A., Hanack M. // Synlett 2008. № 15. P. 2287. https://doi.org/10.1055/s-2008-1078269
- Martynov A.G., Birin K.P., Gorbunova Y.G. et al. // Macroheterocycles 2013. V. 6. № 1. P. 23. https://doi.org/10.6060/mhc130221m
- Takamatsu S., Ishikawa T., Koshihara S. et al. // Inorg. Chem. 2007. V. 46. № 18. P. 7250. https://doi.org/10.1021/ic700954t
- Platonova Y.B., Volov A.N., Tomilova L.G. // J. Catal. 2019. V. 373. P. 222. https://doi.org/10.1016/j.jcat.2019.04.003
- Alpugan S., İşci Ü., Albrieux F. et al. // Chem. Commun. 2014. V. 50. № 56. P. 7466. https://doi.org/10.1039/c4cc02523g
- Shokurov A.V., Yagodin A.V., Martynov A.G. et al. // ECS J. Solid State Sci. Technol. 2020. V. 9. № 5. P. 051006. https://doi.org/10.1149/2162-8777/ab9a5e
- Shokurov A.V., Yagodin A.V., Martynov A.G. et al. // Small 2022. V. 18. № 2. P. 2104306. https://doi.org/10.1002/smll.202104306
- May A., Majumdar P., Martynov A.G. et al. // J. Porphyr. Phthalocyanines 2020. V. 24. № 04. P. 589. https://doi.org/10.1142/S108842462050011X
- Gorbunova Y.G., Martynov A.G., Birin K.P. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 2. P. 202. https://doi.org/10.1134/S0036023621020091
- Mukherjee D., Manjunatha R., Sampath S. et al. // Phthalocyanines as Sensitive Materials for Chemical Sensors, in: Mater. Chem. Sens., Springer International Publishing, Cham, 2017: pp. 165–226 https://doi.org/10.1007/978-3-319-47835-7_8
- Zhang Y., Cai X., Bian Y. et al. // Organic Semiconductors of Phthalocyanine Compounds for Field Effect Transistors (FETs), in: J. Jiang (Ed.), Funct. Phthalocyanine Mol. Mater., Springer Berlin Heidelberg, Berlin, Heidelberg, 2010: pp. 275–322 https://doi.org/10.1007/978-3-642-04752-7
- Kumar A., Meunier-Prest R., Bouvet M. // Sensors. 2020. V. 20. № 17. P. 4700. https://doi.org/10.3390/s20174700
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					




