Dyes for photoelectronics based on (12H-quinoxalino[2,3-B]phenoxazinyl)phenyl derivatives

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The acylation reactions of 4-(2,4-di-tert-butyl-10-methoxy-12H-quinoxalino[2,3-b]phenoxazin-12-yl)aniline with acid chlorides of various structures, including substituents with the properties of anchor groups (hydroxyphenyl, carboxyl, acrylamide, methacrylamide), as well as isobenzofuran-1,3-dione and dihydrofuran-2,5-dione led to the formation of the corresponding 4-(2,4-di-tert-butyl-10-methoxy-12H-quinoxalino[2,3-b]phenoxazin-12-yl)anilides in high yield (79–92%). The resulting amides were characterized by strong (ε = 2.94–4.26∙104 M–1·cm–1) absorption bands in the range of 470–630 nm with maxima at 548–551 nm. They also exhibit a photovoltaic effect and high open-circuit parameters (up to 0.57 V) in DSSC solar cells and the ability to exhibit photodiode properties.

About the authors

E. P. Ivakhnenko

Institute of Physical and Organic Chemistry, Southern Federal University

Email: ivakhnenko@sfedu.ru
Rostov-on-Don, 344091 Russia

N. I. Omelichkin

Institute of Physical and Organic Chemistry, Southern Federal University

Rostov-on-Don, 344091 Russia

P. A. Knyazev

Institute of Physical and Organic Chemistry, Southern Federal University

Rostov-on-Don, 344091 Russia

S. E. Kislicin

Institute of Physical and Organic Chemistry, Southern Federal University

Rostov-on-Don, 344091 Russia

A. V. Chernyshev

Institute of Physical and Organic Chemistry, Southern Federal University

Rostov-on-Don, 344091 Russia

A. E. Aleksandrov

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Moscow, 119071 Russia

A. R. Tameev

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Moscow, 119071 Russia

V. I. Minkin

Institute of Physical and Organic Chemistry, Southern Federal University

Rostov-on-Don, 344091 Russia

References

  1. Nicolas Y., Allama F., Lepeltier M., Massin J., Castet F., Ducasse L., Hirsch L., Boubegtiten Z., Jonusauskas G., Olivier C., Toupance T. // Chem. Eur. J. 2014. Vol. 20. P. 3678. doi: 10.1002/chem.201303775
  2. Di C., Li J., Yu G., Xiao Y., Guo Y., Liu Y., Qian X., Zhu D. // Org. Lett. 2008. Vol. 10. P. 3025. doi: 10.1021/ol8008667
  3. Allama F., Gherraf N., Nicolas Y., Toupance T., Khatmi D. // Acta Sci. Nat. 2019. Vol. 6. P. 42. doi: 10.2478/asn-2019-0006
  4. Gong X., Han P., Wen H., Sun Y., Zhang X., Yang H., Lin B. // Eur. J. Org. Chem. 2017. Vol. 25. P. 3689. doi: 10.1002/ejoc.201700393
  5. Schaffroth M., Lindner B.D., Vasilenko V., Rominger F., Bunz U.H.F. // J. Org. Chem. 2013. Vol. 78. P. 3142. doi: 10.1021/jo400092r
  6. Shi X., Chi C. // Top. Curr. Chem. Collect. Cham: Springer International Publishing, 2018. P. 169. doi: 10.1007/978-3-319-93302-3_4
  7. Bunz U.H.F., Freudenberg J. // Acc. Chem. Res. 2019. Vol. 52. P. 1575. doi: 10.1021/acs.accounts.9b00160
  8. Ivakhnenko E.P., Romanenko G.V., Makarova N.I., Kovalenko A.А., Knyazev P.A., Rostovtseva I.A., Starikov A.G., Minkin V.I. // Dyes Pigm. 2020. Vol. 176. P. 108174. doi: 10.1016/j.dyepig.2019.108174
  9. Ivakhnenko E.P., Knyazev P.A., Omelichkin N.I., Makarova N.I., Starikov A.G., Aleksandrov A.E., Ezhov A.V., Tameev A.R., Demidov O.P., Minkin V.I. // Dyes Pigm. 2022. Vol. 197. P. 109848. doi: 10.1016/j.dyepig.2021.109848
  10. Ivakhnenko E.P., Romanenko G.V., Kovalenko A.A., Revinskii Yu.V., Knyazev P.A., Kuzmin V.A., Minkin V.I. // Dyes Pigm. 2018. Vol. 150. P. 97. doi: 10.1016/j.dyepig.2017.11.009
  11. Минкин В.И., Князев П.А., Омеличкин Н.И., Макарова Н.И., Бородкин Г.С., Стариков А.Г., Демидов О.П., Ивахненко Е.П. // Изв. АН. Сер. хим. 2023. Т. 72. С. 669; Minkin V.I., Knyazev P.A., Omelichkin N.I., Makarova N.I., Borodkin G.S., Starikov A.G., Demidov O.P., Ivakhnenko E.P. // Russ. Chem. Bull. 2023. Vol. 72. P. 669. doi: 10.1007/s11172-023-3831-4
  12. Shen J., Li Y., He J.-H. // Dyes Pigm. 2016. Vol. 127. P. 187. doi: 10.1016/j.dyepig.2015.11.029
  13. Cardona C.M., Li W., Kaifer A.E., Stockdale D., Bazan G.C. // Adv. Mater. 2011. Vol. 23. P. 2367. doi: 10.1002/adma.201004554
  14. Najm A.S., Alwash S.A., Sulaiman N.H., Chowdhury M.S., Techato K. // Environ. Prog. Sustain. Energy. 2023. Vol. 42. P. e13955. doi: 10.1002/ep.13955
  15. Juska G., Arlauskas K., Viliunas M., Kocka J. // Phys. Rev. Lett. 2000. Vol. 84. P. 4946. doi: 10.1103/PhysRevLett.84.4946
  16. Parker C.A., Rees W.T. // Analyst. 1960. Vol. 85. P. 587.
  17. Magde D., Brannon J.H., Cremers T.L., Olmsted J. // J. Phys. Chem. 1979. Vol. 83. P. 696. doi: 10.1021/j100469a012
  18. Zhang L., Yang X., Li S., Hagfeldt A., Sun L. // Solar RRL. 2020. Vol. 4. P. 1900436. doi: 10.1002/solr.201900436
  19. Ezhov A.V., Aleksandrov A.E., Zhdanova K.A., Zhdanov A.P., Klyukin I.N., Zhizhin K.Yu., Bragina N.A., Mironov A.F., Tameev A.R. // Synth. Met. 2020. Vol. 269. P. 116567. doi 10.1016/j. synthmet.2020.116567
  20. Saranin D.S., Mazov V.N., Luchnikov L.O., Lypenko D.A., Gostishev P.A., Muratov D.S., Podgorny D.A., Migunov D.M., Didenko S.I., Orlova M.N., Kuznetsov D.V., Tameev A.R., Di Carlo A. // J. Mater. Chem. (C). 2018. Vol. 6. P. 6179. doi: 10.1039/C8TC01169A
  21. Stephen M., Genevičius K., Juška G., Arlauskas K., Hiorns R.C. // Polym. Int. 2007. Vol. 66. P. 13. doi: 10.1002/pi.5274

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences