Synthesis and spectral fluorescence properties of Mg(II)-porphyrins

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Mg(II)-5,15-diphenylporphyrin, Mg(II)-5,10,15,20-tetraphenylporphyrin, Mg(II)-2,3,7,8,12,12,13,17,18-octaethylporphyrin and Mg(II)-5,10,15,20-tetra-(pentafluorophenyl)porphyrin were obtained using the coordination reaction of the corresponding porphyrins with magnesium acetate in a boiling dimethylformamide–ethylene glycol mixture. The complexation of β-octachloro-5,10,15,20-tetra(pentafluorophenyl)porphyrin with magnesium acetate in dimethylformamide already at room temperature led to the formation of the corresponding Mg(II)-porphyrinate. A facile method for the preparation of magnesium complexes with magnesium chloride in dimethylformamide has been proposed as an example of the metal exchange reaction of Cd(II)-5,10,15,20-tetraphenylporphyrin and Cd(II)-2,3,7,8,12,13,17,18-octaethylporphyrin. The synthesized compounds were identified by UV-Vis, NMR spectroscopy,mass spectrometry and elemental analysis methods. The fluorescence properties of Mg-porphyrins in acetone have been studied. The values of fluorescence quantum yields and Stokes shifts of the studied compounds were calculated. The influence of the nature of substituents on the fluorescence characteristics of Mg-porphyrins was evaluated. The coordination reaction of β-octachloro-5,10,15,20-tetra(pentafluorophenyl)porphyrin with magnesium acetate in dimethylformamide was studied by spectrophotometric method. The kinetic parameters were calculated and the stoichiometric mechanism of the studied reaction has been proposed.

作者简介

S. Zvezdina

G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Ivanovo, 153040 Russia

N. Chizhova

G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Ivanovo, 153040 Russia

A. Likhonina

G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Email: talanovaanastasiya@mail.ru
Ivanovo, 153040 Russia

N. Mamardashvili

G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Ivanovo, 153040 Russia

参考

  1. Oluwole D.O.,Yagodin A.V., Britton J., Martynov A.G., Gorbunova Yu.G., Tsivadze A.Yu., Nyokong T. // Dalton Trans. 2017. Vol. 46. P. 16190. doi: 10.1039/c7dt03867d
  2. Цивадзе А.Ю., Чернядьев А.Ю. // ЖНХ. 2020. Т. 11. № 11. С. 1469. doi: 10.31857/S0044457X20110197; Tsivadze A.Y., Chernyad’ev A.Y. // Russ. J. Inorg. Chem. 2020. Vol. 65. N 11. P. 1662. doi: 10.1134/S0036023620110194
  3. Alsharari A.M., Darwish A., Rashad M. // Opt. Mater. 2020. Vol. 105. P. 109870. doi: 10.1016/j.optmat.2020.109870
  4. Stuzhin P.A., Goryachev M.Yu., Ivanova S.S., Nazarova A., Pimkov I., Koifman O.I. // J. Porph. Phthal. 2013. Vol. 17. N 8. P. 905. doi: 10.1142/s1088424613500892
  5. Auras B.L., de Lucca Meller S., Da Silva M.P., Neves A., Cocca L.H., de Boni L, Da Silveira C.H., Iglesias B.A., Auras B.L. // Appl. Organomet. Chem. 2018. Vol. 32. N 5. P. e4318. doi: 10.1002/aoc.4318
  6. Функциональные материалы на основе тетрапиррольных макрогетероциклических соединений / Под. ред. О.И. Койфмана. М.: Ленард, 2019. 848 с.
  7. Kuzmin S.M., Chulovskaya S.A., Filimonova Y.A., Parfenyuk V.I. // J. Electroanal. Chem. 2023. Vol. 947. Р. 117798. doi: 10.1016/j.jelechem.2023.117798
  8. Charisiadis A., Nikolaou V., Nikoloudakis E., Ladomenou K., Charalambidis G., Coutsolelos A.G. // Chem. Commun. 2025. Vol. 61. P. 4630. doi: 10.1039/d4cc06655c
  9. Vorotyntsev M.A., Konev D.V., Devillers C.H., Bezverkhyy I., Heintz O. // Electrochim. Acta. 2010. Vol. 55. Р. 6703. doi: 10.1016/j.electacta.2010.06.001
  10. Vorotyntsev M.A., Konev D.V., Devillers C.H., Bezverkhyy I., Heintz O. // Electrochim. Acta. 2011. Vol. 56. Р. 3436. doi: 10.1016/j.electacta.2010.10.039
  11. Конев Д.В., Воротынцев М.А., Девильер Ш., Зюбина Т.С., Зюбин А.С., Лизгина К.В., Волков А.Г. // Электрохимия. 2013. Т. 49. № 8. С. 840. doi: 10.7868/S0424857013080094; Konev D.V., Vorotyntsev M.A., Devillers C.H., Zyubina T.S., Zyubin A.S., Lizgina K.V., Volkov A.G. // Russ. J. Electrochem. 2013. Vol. 49. Р. 753. doi: 10.1134/s1023193513080090
  12. Konev D.V., Devillers C.H., Lizgina K.V., Zyubina T.S., Zyubin A.S., Maiorova-Valkova L.A., Vorotyntsev M.A. // Electrochim. Acta. 2014. Vol. 122. Р. 3. doi: 10.1016/j.electacta.2013.10.004
  13. Goslinski T., Piskorz J. // J. Photochem. Photobiol. (C). 2011. Vol. 12. P. 304. doi: 10.1016/j.jphotochemrev. 2011.09.005
  14. Oyim J., Omolo C.A., Amuhaya E.K. // Front. Chem. 2021. Vol. 9. P. 635344. doi: 10.3389/fchem.2021. 635344
  15. Babu B., Mack J., Nyokong T. // Dalton Trans. 2020. Vol. 49. N. 28. P. 9568. doi: 10.1039/d0dt01915a
  16. Linstead R.P., Whalley M. // J. Chem. Soc. 1952. P. 4839. doi: 10.1039/JR9520004839
  17. Stuzhin P.A., Tarakanov P., Shiryaeva S., Zimenkova A., Koifman O.I., Viola E., Donzello M.P., Claudio Ercolani C. // J. Porph. Phthal. 2012. Vol. 16. P. 968. doi: 10.1142/S1088424612501052
  18. Cook A.H., Linstead R.P. // J. Chem. Soc. 1937. P. 929. doi: 10.1039/JR9370000929
  19. Чижова Н.В., Иванова Ю.Б., Русанов А.И., Хрушкова Ю.В., Мамардашвили Н.Ж. // ЖОрХ. 2019. Т. 55. № 5. С. 754; Chizhova N.V., Ivanova Yu.B., Rusanov A.I., Khrushkova Yu.V., Mamardashvili N.Zh. // Russ. J. Org. Chem. 2019. Vol. 55. N 5. P. 655. doi: 10.1134/S1070428019050129
  20. Rusanov A., Chizhova N., Mamardashvili N. // Molecules 2022. Vol. 27. N 23. P. 8619. doi: 10.3390/molecules27238619
  21. Ботнарь А.А., Знойко С.А., Домарева Н.П., Казарян К.Ю., Тихомирова Т.В., Горнухина О.В., Кошель С.Г., Вашурин А.С. // ЖНХ. 2022. Т. 67. № 3. С. 326. doi: 10.31857/S0044457X22030047; Botnar A.A., Znoiko S.A., Domareva N.P., Kazaryan K.Yu., Tikhomirova T.V., Gornukhina O.V., Koshel S.G., Vashurin A.S. // Russ. J. Inorg. Chem. 2022. Vol. 67. N. 3. P. 306. doi: 10.1134/S0036023622030044
  22. Adler A.D., Longo F.R., Kampas F., Kim J. // J. Inorg. Nucl. Chem. 1970. Vol. 32. N 7. P. 2443. doi: 10.1016/0022-1902(70)80535-8
  23. Yamashita K., Kihara N., Shimidzu H., Suzuki H. // Photochem. Photobiol. 1982. Vol. 35. N 1. P. 1. doi: 10.1111/j.1751-1097.1982.tb03803.x
  24. Davis M.S., Forman A., Fajer J. // Proc. Natl. Acad. Sci. USA. 1979. Vol. 76. P. 4170.
  25. Ishizuka T., Grover N., Kingsbury G.J., Kotani H., Senge M.O., Kojima T. // Chem. Soc. Rev. 2022. Vol. 51. P. 7560. doi: 10.1039/D2CS00391K
  26. Березин Б.Д. Координационные соединения порфиринов и фталоцианина. М.: Наука, 1978. 280 с.
  27. Хембрайт П. // Усп. хим. 1977. Т. 46. № 7. С. 1207.
  28. Березин Б.Д., Шухто О.В., Березин Д.Б. // ЖНХ. 2002. Т. 47. №. 8. С. 1305; Berezin B.D., Shukhto O.V., Berezin D.B. // Russ. J. Inorg. Chem. 2002. Vol. 47. N 8. P. 1187.
  29. Dmitrieva O.A., Chizhova N.V., Tesakova M.V., Parfenyuk V.I., Manardashvili N.Zh. // J. Organomet. Chem. 2021. Vol. 940. P. 121790. doi: 10.1016/j.jorganchem.2021.121790
  30. Чижова Н.В., Лихонина А.Е., Мамардашвили Н.Ж. // ЖОХ. 2023. Т. 93. № 6. С. 959; Chizhova N.V., Likhonina A.E., Mamardashvili N.Zh. // Russ. J. Gen. Chem. 2023. Vol. 93 N. 6. Р. 1433. doi: 10.1134/S1070363223060154
  31. Zvezdina S.V., Chizhova N.V., Mamardashvili N.Z. // Russ. J. Gen. Chem. 2024. Vol. 94. N 9. P. 2282. doi: 10.1134/S1070363224090093
  32. Yang S.I, Seth J., Strachan P., Gentemann S., Kim D., Holten D., Lindsey J.S., Bocian D.F. // J. Porphyr. Phthal. 1999. Vol. 3. P. 117. doi: 10.1002/(sici)1099-1409(199902)3:2 <117::aid-jpp110>3.0.co;2-x
  33. Moore K.T., Fletcher J.T., Therien M.J. // J. Am. Chem. Soc. 1999. Vol. 121. P. 5196. doi: 10.1021/ja9816741
  34. Timkovich R., Tulinsky A. // J. Am. Chem. Soc. 1969. Vol. 91. N 16. P. 4430. doi: 10.1021/ja01044a018
  35. Wang J. // J. Phys. Conf. Ser. 2025. Vol. 3008. N 1. P. 012058. doi: 10.1088/1742-6596/3008/1/012058
  36. Yang S.I., Seth J., Strachan J.P., Gentemann S., Kim D., Holten D., Bocian D.F. // J. Porph. Phthal. 1999. Vol. 3. N 2. P. 117. doi: 10.1002/(SICI)1099-1409(199902)3:2<117::AID-JPP110>3.0.CO;2-X
  37. Takeuchi T., Gray H.B., Goddard III W.A. // J. Am. Chem. Soc. 1994. Vol. 116. N 21. P. 9730. doi: 10.1021/ja00100a043
  38. Dmitrieva O.A., Chizhova N.V., Mamardashvili N.Zh. // Inorg. Chem. Acta. 2021. Vol. 528. P. 120620. doi: 10.1016/j.ica.2021.120620
  39. Olsson S., Dahlstrand Ch., Gogoll A. // Dalton Trans. 2018. Vol. 47. P. 11572. doi: 10.1039/C8DT02432D
  40. Мальцева О.В., Звездина С.В., Чижова Н.В., Мамардашвили Н.Ж. // ЖОХ. 2016. Т. 86. № 1. С. 110; Maltseva O.V., Zvezdina S.V., Chizhova N.V., Mamardashvili N.Zh. // Russ. J. Gen. Chem. 2016. Vol. 86. N 1. P. 102. doi: 10.1134/S1070363216010187
  41. Tsvirko M., Stelmakh G., Pyatosin V., Solovyov K., Kachura T., Piskarskas A., Gadonas R. // Chem. Phys. 1986. Vol. 106. P. 467.
  42. Lakowicz J.R. Principles of fluorescence spectroscopy. New York: Springer, 2006. Vol. 26. 954 p.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025