Получение дисперсий графена в растворах неионогенных поверхностно-активных веществ для модифицирования полимерных гелей

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Изучены условия получения стабильных дисперсий многослойного графена в водных растворах неионогенных поверхностно-активных веществ (ПАВ), применяемых в фармации и косметике. Найдены оптимальные концентрации ПАВ, способствующие максимальному содержанию графена в дисперсии, уменьшению размера частиц и полидисперсности. Полученные дисперсии использованы в гелевых системах на основе редкосшитой полиакриловой кислоты. Установлено, что введение графена и ПАВ в полимерные гели приводит к направленному изменению реологических характеристик и существенному возрастанию электропроводности. Показана возможность увеличения высвобождения лекарства из модифицированных гелей под действием электрофореза, что перспективно для трансдермальной доставки биологически активных веществ.

Sobre autores

A. Gataullin

Kazan National Research Technological University

Email: zulfat.azari@yandex.ru
420015, Kazan, Karl Marx St., 68

V. Abramov

Kazan National Research Technological University; Kazan Institute of Biochemistry and Biophysics, FRC KazNTS RAS

420015, Kazan, Karl Marx St., 68; 420111, Kazan, Lobachevsky St., 2/31

S. Bogdanova

Kazan National Research Technological University

420015, Kazan, Karl Marx St., 68

Bibliografia

  1. Sharma S. S. A., Bashir S., Kasi R., Subramaniam R. T. The significance of graphene based composite hydrogels as smart materials: A review on the fabrication, properties, and its applications // FlatChem. 2022. V. 33. ID 100352. https://doi.org/10.1016/j.flatc.2022.100352
  2. Croitoru A.-M., Ficai D., Ficai A. Novel photothermal graphene-based hydrogels in biomedical applications // Polymers. 2024. V. 16. N 8. ID 1098. https://doi.org/10.3390/polym16081098
  3. Zhang S., Zhao B., Zhang D., Yang M., Huang X., Han L., Chen K., Li X., Pang R., Shang Y., Cao A. Conductive hydrogels incorporating carbon nanoparticles: A review of synthesis, performance and applications // Particuology. 2023. V. 83. P. 212–231. https://doi.org/10.1016/j.partic.2023.06.002
  4. Kougkolos G., Golzio M., Laudebat L., Valdez-Nava Z., Flahaut E. Hydrogels with electrically conductive nanomaterials for biomedical applications // J. Mater. Chem. B. 2023. V. 11. ID 2036. https://doi.org/10.1039/d2tb02019j
  5. Hussain S., Maktedar S. S. Structural, functional and mechanical performance of advanced graphene-based composite hydrogels // Results in Chemistry. 2023. V. 6. ID 101029. https://doi.org/10.1016/j.rechem.2023.101029
  6. Ni F., Chen Y., Wang Z., Zhang X., Gao F., Shao Z., Wang H. Graphene derivative based hydrogels in biomedical applications // J. Tissue Eng. 2024. V. 15. P. 1–54. https://doi.org/10.1177/20417314241282131
  7. Lalire T., Longuet C., Taguet A. Electrical properties of graphene / multiphase polymer nanocomposites: A review // Carbon. 2024. V. 225. ID 119055. https://doi.org/10.1016/j.carbon.2024.119055
  8. Saharan R., Paliwal S. K., Tiwari A., Babu M. A., Tiwari V., Singh R., Beniwal S. K., Kumar M., Sharma A., Almalki W. H., Kazmi I., Alzarea S. I., Kukreti N., Gupta G. Beyond traditional hydrogels: The emergence of graphene oxide-based hydrogels in drug delivery // J. Drug Delivery Sci. Technol. 2024. V. 94. ID 105506. https://doi.org/10.1016/j.jddst.2024.105506
  9. Ganguly S., Das P., Maity P. P., Mondal S., Ghosh S., Dhara S., Das N. C. Green reduced graphene oxide toughened semi-IPN monolith hydrogel as dual responsive drug release system: Rheological, physicomechanical, and electrical evaluations // J. Phys. Chem. B. 2018. V. 122. N 29. P. 7201–7218. https://doi.org/10.1021/acs.jpcb.8b02919
  10. Ganguly S., Ray D., Das P., Maity P. P., Mondal S., Aswal V. K., Dhara S., Das N. C. Mechanically robust dual responsive water dispersible-graphene based conductive elastomeric hydrogel for tunable pulsatile drug release // Ultrasonics Sonochem. 2018. V. 42. P. 212–227. https://doi.org/10.1016/j.ultsonch.2017.11.028
  11. Liu J., Cui L., Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications // Acta Biomaterialia. 2013. V. 9. N 12. P. 9243–9257. https://doi.org/10.1016/j.actbio.2013.08.016
  12. Servant A., Leon V., Jasim D., Methven L., Limousin P., Fernandez-Pacheco E. V., Prato M., Kostarelos K. Graphene-based electroresponsive scaffolds as polymeric implants for on-demand drug delivery // Advanced Healthcare Mater. 2014. V. 3. N 8. P. 1334–1343. https://doi.org/10.1002/adhm.201400016
  13. Weaver C. L., LaRosa J. M., Luo X., Cui X. T. Electrically controlled drug delivery from graphene oxide nanocomposite films // ACS Nano. 2014. V. 8. N 2. P. 1834–1843. https://doi.org/10.1021/nn406223e
  14. Sahoo D., Mitra T., Chakraborty K., Sarkar P. Remotely controlled electro-responsive on-demand nanotherapy based on amine-modified graphene oxide for synergistic dual drug delivery // Mater. Today Chem. 2022. V. 25. ID 100987. https://doi.org/10.1016/j,mtchem.2022.100987
  15. Du P., Yan J., Long S., Xiong H., Wen N., Cai S., Wang Y., Peng D., Liu Z., Liu Y. Tumor microenvironment and NIR laser dual-responsive release of berberine 9-O-pyrazole alkyl derivative loaded in graphene oxide nanosheets for chemo-photothermal synergetic cancer therapy // J. Mater. Chem. B. 2020. V. 8. N 18. P. 4046–4055. https://doi.org/10.1039/d0tb00489h
  16. Arnold A. M., Singh J., Sydlik S. A. The role and future of functional graphenic materials in biomedical and human health applications // Biomacromolecules. 2025. V. 26. N 4. P. 2015–2042. https://doi.org/10.1021/acs.biomac.4c01431
  17. Lazar A.-I., Aghasoleimani K., Semertsidou A., Vyas J., Rosca A.-L., Ficai D., Ficai A. Graphene-related nanomaterials for biomedical applications // Nanomaterials. 2023. V. 13. N 6. ID 1092. https://doi.org/10.3390/nano13061092
  18. Zare I., Mirshafiei M., Kheilnezhad B., Far B. F., Hassanpour M., Pishbin E., Vaghefi S. S. E., Yazdian F., Rashedi H., Hasan A., Wang X., Adeli M., Makvandi P. Hydrogel-integrated graphene superstructures for tissue engineering: From periodontal to neural regeneration // Carbon. 2024. V. 223. ID 118970. https://doi.org/10.1016/j.carbon.2024.118970
  19. Saharan R., Paliwal S. K., Tiwari A., Babu M. A., Tiwari V., Singh R., Beniwal S. K., Kumar M., Sharma A., Almalki W. H., Kazmi I., Alzarea S. I., Kukreti N., Gupta G. Beyond traditional hydrogels: The emergence of graphene oxide-based hydrogels in drug delivery // J. Drug Delivery Sci. Technol. 2024. V. 94. ID 105506. https://doi.org/10.1016/j.jddst.2024.105506
  20. Khakpour E., Salehi S., Naghib S. M., Ghorbanzadeh S., Zhang W. Graphene-based nanomaterials for stimuli-sensitive controlled delivery of therapeutic molecules // Frontiers Bioeng. Biotechnol. 2023. V. 11. ID 1129768. https://doi.org/10.3389/fbioe.2023.1129768
  21. Dalla Colletta A., Pelin M., Sosa S., Fusco L., Prato M., Tubaro A. Carbon-based nanomaterials and skin: An overview // Carbon. 2022. V. 196. P. 683–698. https://doi.org/10.1016/j.carbon.2022.05.0366
  22. Williams A.G., Moore E., Thomas A. Graphene-based materials in dental applications: Antibacterial, biocompatible, and bone regenerative properties // Int. J. Biomater. 2023. V. 2023. ID 8803283. https://doi.org/10.1155/2023/8803283
  23. Bisht, A., Zuniga-Bustos M., Prasher G., Gautam S., Poblete H., Singh R. P. Stabilization of carbon nanotubes and graphene by Tween-80: Mechanistic insights from spectroscopic and simulation studies // Langmuir. 2022. V. 38. N 33. P. 10173–10182. https://doi.org/10.1021/acs.langmuir.2c01190
  24. Abreu B., Montero J., Buzaglo M., Regev O., Marques E. F. Comparative trends and molecular analysis on the surfactant-assisted dispersibility of 1D and 2D carbon materials: Multiwalled nanotubes vs graphene nanoplatelets // J. Mol. Liq. 2021. V. 333. ID 116002. https://doi.org/10.1016/j.molliq.2021.116002
  25. Задымова Н. М. Коллоидно-химические аспекты трансдермальной доставки лекарств (обзор) // Коллоид. журн. 2013. Т. 75. № 5. С. 543–556. https://doi.org/10.7868/S0023291213050194 https://www.elibrary.ru/pguymz [Zadymova N. M. Colloidochemical aspects of transdermal drug delivery (review) // Colloid J. 2013. V. 75. N 5. P. 491–503. https://doi.org/10.1134/S1061933X13050189].
  26. Гатауллин А. Р., Богданова С. А., Рахматуллина А. П., Галяметдинов Ю. Г. Диспергирование углеродных нанотрубок в растворах оксиэтилированных изононилфенолов // ЖПХ. 2017. Т. 90. № 11. С. 1489–1497. https://www.elibrary.ru/zwfinl [Gataullin A. R., Bogdanova S. A., Rakhmatullina A. P., Galyametdinov Yu. G. Dispersion of carbon nanotubes in solutions of oxyethylated isononylphenols // Russ. J. Appl. Chem. 2017. V. 90. N 11. P. 1795–1803. https://doi.org/10.1134/S1070427217110118].
  27. Гатауллин А. Р., Абрамов В. А., Богданова С. А., Сальников В. В., Зуев Ю. Ф., Галяметдинов Ю. Г. Получение дисперсий углеродных нанотрубок в растворах оксиэтилированных жирных спиртов для модифицирования гелевых систем // Коллоид.журн. 2024. Т. 86. № 4. С. 422–435. https://doi.org/10.31857/S0023291224040022 https://www.elibrary.ru/carvxu [Gataullin A. R., Abramov V. A., Bogdanova S. A., Salnikov V. V., Zuev Yu. F., Galyametdinov Yu. G. Dispersion in solutions of ethoxylated fatty alcohols for modifying gel systems // Colloid J. 2024. V. 86. N 3. P. 358–369. https://doi.org/10.1134/S1061933X24600155].
  28. Ramadon D., McCrudden M. T. C., Courtenay A. J., Donnelly R. F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications // Drug Delivery and Translational Research. 2022. V. 12. P. 758–791. https://doi.org/10.1007/s13346-021-00909-6
  29. Bide Y., Fashapoyeh M.A., Shokrollahzadeh S. Structural investigation and application of Tween-80 — choline chloride self-assemblies as osmotic agent for water desalination // Sci. Rep. 2021. V. 11. ID 17068. https://doi.org/10.1038/s41598-021-96199-6
  30. Erawati T., Isadiartuti D., Anggalih B. D. The effect of polysorbate 20 and polysorbate 80 on the solubility of quercetin // J. Public Health Afr. 2023. V. 14. N 1. ID 2503. https://doi.org/10.4081/jphia.2023.2503
  31. Almeida M., Magalhaes M., Veiga F., Figueiras A. Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic application in cancer // J. Polym. Res. 2018. V. 25. ID 31. https://doi.org/10.1007/s10965-017-1426-x
  32. Himiniuc L. M., Socolov R., Nica I., Agop M., Volovat C., Ochiuz L., Vasincu D., Rotundu A. M., Rosu I. A., Ghizdovat V., Volovat S. R. Theoretical and experimental aspects of sodium diclofenac salt release from chitosan-based hydrogels and possible applications // Gels. 2023. V. 9. N 5. ID 422. https://doi.org/10.3390/gels9050422
  33. Mast M.-P., Modh H., Knoll J., Fecioru E., Wacker M. G. An update to dialysis-based drug release testing — data analysis and validation using the pharma test dispersion releaser // Pharmaceutics. 2007. V. 13. N 12. ID 2007. https://doi.org/10.3390/pharmaceutics13122007
  34. Amaro-Gahete J., Benitez A., Otero R., Esquivel D., Jimenez-Sanchidrian C., Morales J., Caballero A., Romero-Salguero F. J. A comparative study of particle size distribution of graphene nanosheets synthesized by an ultrasound-assisted method // Nanomaterials. 2019. V. 9. N 2. ID 152. https://doi.org/10.3390/nano9020152
  35. Milanovic M., Cirin D., Krstonosic V. The interactions in ternary system made of xanthan gum, Carbopol 940 and anionic/nonionic surfactant // J. Mol. Liq. 2021. V. 344. ID 117696. https://doi.org/10.1016/j.molliq.2021.117696
  36. Vishnyakov A., Mao R., Kam K., Potanin A., Neimark A. V. Interactions of crosslinked polyacrylic acid polyelectrolyte gels with nonionic and ionic surfactants // J. Phys. Chem. B. 2021. V. 125. N 50. P. 13817–13828. https://doi.org/10.1021/acs.jpcb.1c08638

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025