On the Absence of Weak Solutions of Nonlinear Nonnegative Higher Order Parabolic Inequalities with a Nonlocal Source
- Authors: Admasu V.E.1
- 
							Affiliations: 
							- RUDN University
 
- Issue: Vol 63, No 6 (2023)
- Pages: 987-999
- Section: Partial Differential Equations
- URL: https://journals.eco-vector.com/0044-4669/article/view/664837
- DOI: https://doi.org/10.31857/S0044466923060029
- EDN: https://elibrary.ru/TQSKVV
- ID: 664837
Cite item
Abstract
The paper proves the absence of solutions of semilinear parabolic inequalities and higher order systems with a singular potential and nonlocal sources. The proofs are based on the test function method developed by E. Mitidieri and S.I. Pokhozhaev.
About the authors
V. E. Admasu
RUDN University
							Author for correspondence.
							Email: mihretesme@gmail.com
				                					                																			                												                								117198, Moscow, Russia						
References
- Митидиери Э., Похожаев С.И. Отсутствие положительных решений для квазилинейных эллиптических задач в // Тр. Матем. ин-та им. В.А. Стеклова. 1999. Т. 227. С. 186–216.
- Mitidieri E., Pohozaev S.I. Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on // J. Evolut. Equat. 2001. V. 1. № 2. P. 189–220.
- Kartsatos A.G., Kurta V.V. On the critical Fujita exponents for solutions of quasilinear parabolic inequalities // J. Math. Anal. Appl. 2002. V. 269. № 1. P. 73–86.
- Jiang Z.X., Zheng, S.N. A Liouville-type theorem for a doubly degenerate parabolic inequality // Acta Math. Scientia. 2010. V. 30. № 3. P. 639–643.
- Admasu W.E., Galakhov E.I., Salieva O.A. Nonexistence of nontrivial weak solutions of some nonlinear inequalities with gradient nonlinearity // Contemporary Math. Fundament. Direct. 2021. V. 67. № 1. P. 1–13.
- Галахов Е.И. Об отсутствии локальных решений некоторых эволюционных задач // Матем. заметки. 2009. Т. 86. № 3. С. 337–349.
- Yang C., Zhao L., Zheng S. The critical Fujita exponent for the fast diffusion equation with potential // J. Math. Anal. Appl. 2013. V. 398. № 2. P. 879–885.
- Liu C. The critical Fujita exponent for a diffusion equation with a potential term // Lithuanian Math. J. 2014. V. 54. № 2. P. 182–191.
- Ishige K. On the Fujita exponent for a semilinear heat equation with a potential term // J. Math. Anal. Appl. 2008. V. 344. № 1. P. 231–237.
- Pinsky R. The Fujita exponent for semilinear heat equations with quadratically decaying potential or in an exterior domain // J. Diff. Eq. 2009. V. 246. № 6. P. 2561–2576.
- Chen C.S., Huang J.C. Some nonexistence results for degenerate parabolic inequalities with local and nonlocal nonlinear terms // J. Nanjing Univ. Math. Biq. 2004. V. 21. № 1. P. 12–20.
- Xiao S., Fang Z.B. Nonexistence of solutions for the quasilinear parabolic differential inequalities with singular potential term and nonlocal source // J. Ineq. Appl. 2020. V. 2020. № 1. P. 1–9.
- Галахов Е.И. Об эллиптических и параболических неравенствах высокого порядка с особенностями на границе // Тр. Матем. ин-та им. В.А. Стеклова. 2010. Т. 269. № 1. С. 76–84.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					