NUMERICAL STUDY OF THE TRANSIENT MODES OF THE KOLMOGOROV FLOW IN A SQUARE CELL

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of two-dimensional flow of a viscous slightly compressible liquid in a square cell under excitation by a static external force periodic in space (Kolmogorov flow) is considered. A new method for determining the flow structure based on the analysis of the vorticity field at various points in time is presented. This method is used to classify the types of flows whose characteristics are obtained by numerical modeling. The main flow modes are distinguished depending on the values of the bottom friction coefficient and the pumping force: laminar, chaotic and vortex modes. Transitional flow types are studied separately: the quasi-periodic regime, which arises through a sequence of bifurcations during the change of laminar and chaotic flow modes, and the regime of alternation, which occurs during the transition from chaotic to vortex flow. Phase diagrams in the space of the amplitude of the external force — the bottom friction coefficient are constructed, making it possible to classify the type of flow according to the values of the bottom friction coefficient and the pumping force.

About the authors

A. O Posudnevskaya

L.D. Landau Institute of Theoretical Physics of the Russian Academy of Sciences; Institute of Design Automation of the Russian Academy of Sciences

Email: posudnevskaia.ao@phystech.edu
Chernogolovka, Russia; Moscow, Russia

S. V Fortova

Institute of Design Automation of the Russian Academy of Sciences

Moscow, Russia

A. N Doludenko

Joint Institute of High Temperatures of the Russian Academy of Sciences

Moscow, Russia

I. V Kolokolov

L.D. Landau Institute of Theoretical Physics of the Russian Academy of Sciences

Chernogolovka, Russia

V. V Lebedev

L.D. Landau Institute of Theoretical Physics of the Russian Academy of Sciences

Chernogolovka, Russia

References

  1. Monin A.S., Yaglom A.M. Statistical Fluid Mechanics. V. I, MIT Press, 1971. V. II, Diver, 2007.
  2. Белоцерковский О.М., Опарин А.М. Численный эксперимент: от порядка к хаосу. Изд. 2-е доп. М.: Наука, 2000.
  3. Бетчелор Дж. К. Теория однородной турбулентности. М.: Изд-во иностр. лит., 1955.
  4. Kraichnan R.H. Inertial Ranges in Two-Dimensional Turbulence // Phys. Fluids. 1967. V 10. P 1417—1423.
  5. Leith C. E. Diffusion Approximation for Two-Dimensional Turbulence // Phys. Fluids. 1968. V 11. P. 671—672.
  6. Batchelor G. K. Computation of the Energy Spectrum in Homogeneous Two-Dimensional Turbulence // Phys. Fluids.
  7. V 12 P 233-239.
  8. Kolmogorov A. N. Proceedings of the USSR Academy of Sciences // Doklady Akademii Nauk SSSR 1941 30 299303.
  9. Kolokolov I. V., Lebedev V. V. Large-scale flow in two-dimensional turbulence at static pumping // JETP Lett. 2017. V 106, № 10. P 659-661.
  10. Sommeria J. Experimental study of the two-dimensional inverse energy cascade in a square box // Fluid Mech. 1986 V. 170, P. 139-168.
  11. Smith L. M., Yakhot V. Bose condensation and small-scale structure generation in a random force driven 2D turbulence // Phys. Rev. Lett. 1993 V. 71, P. 352.
  12. Smith L. M., Yakhot V. Finite-size effects in forced two-dimensional turbulence // Fluid Mech. 1994 V. 274, P. 115-138.
  13. Borue V. Inverse energy cascade in stationary two-dimensional homogeneous turbulence // Phys. Rev. Lett. 1994 V. 72, 1475.
  14. Clercx H.J.H. A spectral solver for the Navier-Stokes equations in velocity-vorticity formulation for flows with two nonperiodic directions // Comp. Phys. 1997 V. 137, P. 186.
  15. Clercx H.J.H., Maassen S.R., van Heijst G.J.F. Spontaneous spin-up during the decay of 2D turbulence in a square container with rigid boundaries // Phys. Rev. Lett. 1998 V. 80, 5129.
  16. Clercx H.J.H., Nielsen A.H., Torres D.J., Coutsias E.A. Two-dimensional turbulence in square and circular domains with no-slip walls // Eur. J. Mech. B-Fluids 2001 V. 20 P. 557-576.
  17. Molenaar D., Clercx H.J.H., van Heijst G.J.F. Angular momentum of forced 2D turbulence in a square no-slip domain // Physica D 2004 V.196, P. 329-340.
  18. Xia H., Punzmann H., Falkovich G., Shats M. G. Turbulence-Condensate Interaction in Two Dimensions // Phys. Rev. 2008 Lett. 101 194504.
  19. Xia H., Shats M., Falkovich G. Spectrally condensed turbulence in thin layers // Phys. Fluids 2009 V. 21 125101.
  20. Francois N., Xia Y., Punzmann H., Ramsden S., Shats M. Three-Dimensional Fluid Motion in Faraday Waves: Creation of Vorticity and Generation of Two-Dimensional Turbulence // Phys. Rev. 2014 X4 021021.
  21. Yue-Kin Tsang, Young W.R. Forced-dissipative two-dimensional turbulence: a scaling regime controlled by drag // Phys. Rev. 2009 E 79, 045308.
  22. Yue-Kin Tsang. Nonuniversal velocity probability densities in two-dimensional turbulence: The effect of large-scale dissipation // Phys. Fluids 2010 22, 115102.
  23. Chertkov M., Connaughton C., Kolokolov I., Lebedev V. Dynamics of Energy Condensation in Two-Dimensional Turbulence // Phys. Rev. 2007 Lett 99 084501.
  24. Laurie J., Boffetta G., Falkovich G., Kolokolov I., Lebedev V. название // Phys. Rev. 2014 Lett. 113 254593.
  25. Kolokolov I.V., Lebedev V.V. Structure of coherent vortices generated by the inverse cascade of two-dimensional turbulence in a finite box Phys. Rev. 2016 E 93 033104.
  26. Kolokolov I.V., Lebedev V.V. Coherent vortex in two-dimensional turbulence: Interplay of viscosity and bottom friction // Phys. Rev. E 102 023108 (2020).
  27. Mishra P. K., Herault J., Fauve S., Verma M. K. Dynamics of reversals and condensates in two-dimensional Kolmogorov flows // Phys. Rev. 2015 E 91 053005.
  28. Denisenko V.V., Doludenko A.N., Fortova S.V., Kolokolov I.V., Lebedev V.V. Numerical modeling of the Kolmogorov flow in a viscous media, forsed by the periodic on space static force // Computer Research and Modeling. 2022. V. 14. T. Iccue 4. P. 741-753.
  29. Doludenko A.N., Fortova S.V., Kolokolov I.V., Lebedev V.V. Coherent vortex in a spatially restricted two-dimensional turbulent flow in absence of bottom friction // Physics of Fluids 2021 V. 33 011704.
  30. Doludenko A.N., Fortova S.V., Kolokolov I.V., Lebedev V.V. Coherent vortex versus chaotic state in two-dimension turbulence // Annals of Physics 2022 V. 447. part 2 169072.
  31. Anderson D., Tannehill J.C., Pletcher R.H. Computational Fluid Mechanics and Heat Transfer, third ed., Taylor and Francis, 2016.
  32. Флетчер К. Вычислительные методы в динамике жидкостей. Т. 1—2. М.: Мир, 1991.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences