Specific Features of Binding Bioactive Organic Molecules with the Metallic Matrix of Heteronuclear 3d-4f Structures Containing Soft and Hard Metallocenters Using the Nd(III)–Cu(II) Complex as an Example
- 作者: Katkova M.A.1, Zhigulin G.Y.1, Baranov E.V.1, Zabrodina G.S.1, Muravyeva M.S.1,2, Ketkov S.Y.1, Fomina I.G.3, Eremenko I.L.3
-
隶属关系:
- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- 期: 卷 49, 编号 9 (2023)
- 页面: 590-600
- 栏目: Articles
- URL: https://journals.eco-vector.com/0132-344X/article/view/667485
- DOI: https://doi.org/10.31857/S0132344X23600157
- EDN: https://elibrary.ru/WBQJTM
- ID: 667485
如何引用文章
详细
The polynuclear alanine hydroximate metallamacrocyclic complex Nd(C8H7NO4)(H2O)[15-
MCCu(II)Alaha-5](CH3COO) with the axial 3-hydroxy-4-pyridinone ligand is synthesized for the first time
from the (3-hydroxy-2-methyl-4-oxo-4H-pyridin-1-yl) acetate ligand. The X-ray diffraction (XRD) (CIF
file CCDC no. 2242224) and quantum chemical methods show that the interaction of ligand L with the Nd3+
ion retained due to ionic bonds with the oxygen atoms in the copper-containing metallamacrocyclic matrix
results in the formation of axial bonds (having a covalent contribution) between Nd3+ and the dioxolene fragment
of the pyridinone ligand. In topological and energy characteristics, these axial bond approach the bonds
of Cu2+ with the amine nitrogen atoms of the alanine hydroximate metallamacrocycle.
作者简介
M. Katkova
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: marina@iomc.ras.ru
Россия, Нижний Новгород
G. Zhigulin
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: marina@iomc.ras.ru
Россия, Нижний Новгород
E. Baranov
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: marina@iomc.ras.ru
Россия, Нижний Новгород
G. Zabrodina
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: marina@iomc.ras.ru
Россия, Нижний Новгород
M. Muravyeva
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia; Privolzhsky Research Medical University, Nizhny Novgorod, Russia
Email: marina@iomc.ras.ru
Россия, Нижний Новгород; Россия, Нижний Новгород
S. Ketkov
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: marina@iomc.ras.ru
Россия, Нижний Новгород
I. Fomina
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
Email: marina@iomc.ras.ru
Россия, Москва
I. Eremenko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
编辑信件的主要联系方式.
Email: marina@iomc.ras.ru
Россия, Москва
参考
- Advances in Metallacrown Chemistry / Ed. Za-leski C.M. Cham: Springer, 2022. 381 p.
- Каткова М.А. // Коорд. химия. 2018. Т. 44. С. 135 (Katkova M.A. // Russ. J. Coord. Chem. 2018. V. 44. P. 284). https://doi.org/10.1134/S107032841804005X
- Ostrowska M., Fritsky I.O., Gumienna-Kontecka E. et al. // Coord. Chem. Rev. 2016. V. 327–328. P. 304.
- Tegoni M., Remelli, M. // Coord. Chem. Rev. 2012. V. 256. P. 289.
- Mezei G., Zaleski C.M., Pecoraro V.L. // Chem. Rev. 2007. V. 107. P. 4933.
- Katkova M.A., Zabrodina G.S., Muravyeva M.S. et al. // Eur. J. Inorg. Chem. 2015. V. 2015. P. 5202.
- Katkova M.A., Zabrodina G.S., Baranov E.V. et al. // Appl. Organomet. Chem. 2018. V. 32. P. e4389.
- Muravyeva M.S., Zabrodina G.S., Samsonov M.A. et al. // Polyhedron. 2016. V. 114. P. 165.
- Katkova M.A., Zabrodina G.S., Rumyantcev R.V. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. P. 4328.
- Kremlev K.V., Samsonov M.A., Zabrodina G.S. et al. // Polyhedron. 2016. V. 114. P. 96.
- Cutland A.D., Halfen J.A., Kampf J.W. et al. // J. Am. Chem. Soc. 2001. V. 123. P. 6211.
- Lim C.S., Kampf J.W., Pecoraro V.L. // Inorg. Chem. 2009. V. 48. P. 5224.
- Tegoni M., Tropiano M., Marchio L. et al. // Dalton Trans. 2009. P. 6705.
- Jankolovits J., Lim C.S., Mezei G. et al. // Inorg. Chem. 2012. V. 51. P. 4527.
- Jankolovits J., Van-Noord A.D.C., Kampf J.W. et al. // Dalton Trans. 2013. V. 42. P. 9803.
- Pavlishchuk A.V., Kolotilov S.V., Zeller M. et al. // Inorg. Chem. 2014. V. 53. P. 1320.
- Katkova M.A., Zabrodina G.S., Muravyeva M.S. et al. // Inorg. Chem. Commun. 2015. V. 52. P. 31.
- Pavlishchuk A.V., Kolotilov S.V., Zeller M. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. P. 3504.
- Lim C.S., Jankolovits J., Zhao P. et al. // Inorg. Chem. 2011. V. 50. P. 4832.
- Katkova M.A., Baranov E.V., Zabrodina G.S. et al. // Macroheterocycles. 2021. V. 14. P. 101.
- Rangel M., Moniz T., Silva A. et al. // Pharmaceuticals. 2018. V. 11. P. 110.
- Santos M.A., Marques S.M., Chaves S. // Coord. Chem. Rev. 2012. V. 256. P. 240.
- Mawani Y., Cawthray J.F., Chang S. // Dalton Trans. 2013. V. 42. P. 5999.
- Lin S., Liu C., Zhao X. et al. // Front. Chem. 2022. V. 10. P. 869860.
- Zhang Z., Rettig S.J., Orvig C. // Can. J. Chem. 1992. V. 70. P. 763.
- Data Collection, Reduction and Correction Program. CrysAlisPro 1.171.41.93a – Software Package. Rigaku OD, 2020.
- SCALE3 ABSPACK: Empirical Absorption Correction. CrysAlisPro 1.171. 41.93a – Software Package, Rigaku OD, 2020.
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
- Sheldrick G.M. SHELXTL. Version 6.14. Structure Determination Software Suite. Madison (WI, USA): Bruker AXS, 2003.
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Ap-pl. Cryst. 2009. V. 42. P. 339.
- Laikov D.N. // Chem. Phys. Lett. 1997. V. 281. P. 151.
- Laikov D.N., Ustynyuk Y.A. // Russ. Chem. Bull. 2005. V. 54. P. 820.
- Zabrodina G.S., Katkova M.A., Rumyantcev R.V. et al. // Macroheterocycles. 2022. V. 15. P. 109.
- Svitova A.L., Popov A.A., Dunsch. L. // Inorg. Chem. 2013. V. 52. P. 3368.
- Katkova M.A., Zhigulin G.Y., Rumyantcev R.V. et al. // Molecules. 2020. V. 25. P. 4379.
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865.
- Laikov D.N. // Theor. Chem. Acc. 2019. V. 138. P. 40.
- Zhigulin G.Yu., Zabrodina G.S., Katkova M.A. et al. // Russ. Chem. Bull. 2018. V. 67. P. 1173.
- Katkova M.A., Zabrodina G.S., Zhigulin G.Yu. et al. // Russ. J. Coord. Chem. 2019. V. 45. P. 721.
- Bader R.F.W. Atoms in Molecules: A Quantum Theory. Oxford: Oxford Univ. Press, 1990. 456 p.
- Abramov Y.A. // Acta Crystallogr. A. 1997. V. 53. P. 264.
- Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. V. 285. P. 170.
- Becke A.D., Edgecombe K.E. // J. Chem. Phys. 1990. V. 92. P. 5397.
- Savin A., Silvi B., Colonna F. // Can. J. Chem. 1996. V. 74. P. 1088.
- Johnson E.R., Keinan S., Mori-Sánchez P. et al. // J. Am. Chem. Soc. 2010. V. 132. P. 6498.
- Allouche A.R. // J. Comput. Chem. 2011. V. 32. P. 174.
- Weekes D.M., Cawthray J.F., Rieder M. et al. // Metallomics. 2017. V. 9. P. 902.
- Orvig C., Rettig S.J., Zhang Z. // Acta Crystallogr. C. 1994. V. 50. P. 1514.
- Molenda J.J., Jones M.M., Johnston D.S. et al. // J. Med. Chem. 1994. V. 37. P. 4363.
- Espinosa E., Alkorta I., Elguero J. et al. // J. Chem. Phys. 2002. V. 117. P. 5529.
- Gibbs G.V, Cox D.F., Crawford T.D. et al. // J. Chem. Phys. 2006. V. 124. P. 084704.
- Zhigulin G.Yu., Zabrodina G.S., Katkova M.A. et al. // Russ. Chem. Bull. 2019. V. 68. P. 743.
- Zhigulin G.Yu., Zabrodina G.S., Katkova M.A. et al. // Russ. J. Coord. Chem. 2019. V. 45. P. 356. https://doi.org/10.1134/S107032841905004X
- Greenwood N.N., Earnshaw A., Chemistry of the Elements, Oxford: Butterworth–Heinemann, 1997. 1364 p.
补充文件
