Halide Complexes [(2-Br-5-MePy)2ZnX2] (X = Cl, Br): Structure and Noncovalent Interactions in the Crystal Structure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The heteroligand complexes [(2-Br-5-MePy)2ZnX2] (X = Cl (I), Br (II)) were prepared by the reaction of zinc(II) chloride or bromide with 2-bromo-5-methylpyridine and studied by X-ray diffraction (CCDC nos. 2204966 (I) and 2204967 (II)). The crystals of I and II contain Cl···Br and Br···Br halogen bonds, which connect the [MX2L2] moieties into supramolecular chains. The energies of these noncovalent interactions were estimated using quantum chemical calculations.

About the authors

M. A. Vershinin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Email: adonin@niic.nsc.ru
Россия, Новосибирск

A. S. Novikov

St. Petersburg State University, St. Petersburg, Russia; Peoples’ Friendship University of Russia, Moscow, Russia

Email: adonin@niic.nsc.ru
Россия, Санкт-Петербург; Россия, Москва

S. A. Adonin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Author for correspondence.
Email: adonin@niic.nsc.ru
Россия, Новосибирск

References

  1. Desiraju G.R., Ho P.S., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. P. 1711.
  2. Orlova A.V., Ahiadorme D.A., Laptinskaya T.V., Kononov L.O. // Russ. Chem. Bull. 2021. V. 70. P. 2214.
  3. Shestimerova T.A., Golubev N.A., Grigorieva A.V. // Russ. Chem. Bull. 2021. V. 70. P. 39.
  4. Isaev A.N. // Russ. J. Phys. Chem. A. 2019. V. 93. P. 2394.
  5. Novikov A.S., Gushchin A.L. // J. Struct. Chem. 2021. V. 62. P. 1325.
  6. Bartashevich E.V., Sobalev S.A., Matveychuk Y.V., Tsirelson V.G. // J. Struct. Chem. 2021. V. 62. P. 1607.
  7. Bokach N.A., Suslonov V.V., Eliseeva A.A. et al. // Cry-stEngComm. 2020. V. 22. P. 4180.
  8. Eliseeva A.A., Ivanov D.M., Novikov A.S. et al. // Dalton Trans. 2020. V. 49. P. 356.
  9. Farris P.C., Wall A.D., Chellali J.E. et al. // J. Coord. Chem. 2018. V. 71. P. 2487.
  10. Awwadi F.F., Turnbull M.M., Alwahsh M.I., Haddad S.F. // New J. Chem. 2018. V. 42. P. 10642.
  11. Awwadi F.F., Haddad S.F., Turnbull M.M. et al. // Cry-stEngComm. 2013. V. 15. P. 3111.
  12. Wu W.X., Wang H., Jin W.J. // CrystEngComm. 2020. V. 22. P. 5649.
  13. Sivchik V.V., Solomatina A.I., Chen Y.-T. et al. // Angew. Chem. Int. Ed. 2015. V. 54. P. 14057.
  14. Liu R., Gao Y.J., Jin W.J. // Acta Crystallogr. B. 2017. V. 73. P. 247.
  15. Katlenok E.A., Haukka M., Levin O.V. et al. // Chem. Eur. J. 2020. V. 26. P. 7692.
  16. Torubaev Y.V., Skabitsky I.V. // CrystEngComm. 2020. V. 22. P. 6661.
  17. Rozhkov A.V., Novikov A.S., Ivanov D.M. et al. // Cryst. Growth Des. 2018. V. 18. P. 3626.
  18. Kryukova M.A., Sapegin A.V., Novikov A.S. et al. // Crystals. 2020. V. 10. P. 371.
  19. Zelenkov L.E., Ivanov D.M., Avdontceva M.S. et al. // Z. Krist. Cryst. Mater. 2019. V. 234. P. 9.
  20. Novikov A.S., Ivanov D.M., Avdontceva M.S., Kukushkin V.Y. // CrystEngComm. 2017. V. 19. P. 2517.
  21. Torubaev Y.V., Skabitsky I.V. // Z. Krist. Cryst. Mater. 2020. V. 235. P. 599.
  22. Truong K.-N., Rautiainen J.M., Rissanen K., Puttreddy R. // Cryst. Growth Des. 2020. V. 20. P. 5330.
  23. Torubaev Y.V., Skabitskiy I.V., Pavlova A.V., Pasynskii A.A. // New J. Chem. 2017. V. 41. P. 3606.
  24. Shestimerova T.A., Yelavik N.A., Mironov A.V. et al. // Inorg. Chem. 2018. V. 57. P. 4077.
  25. Eich A., Köppe R., Roesky P.W., Feldmann C. // Eur. J. Inorg. Chem. 2019. P. 1292.
  26. Suslonov V.V., Soldatova N.S., Ivanov D.M. et al. // Cryst. Growth Des. 2021. V. 21. P. 5360.
  27. Soldatova N.S., Suslonov V.V., Kissler T.Y. et al. // Crystals. 2020. V. 10. P. 230.
  28. Aliyarova I.S., Ivanov D.M., Soldatova N.S. et al. // Cryst. Growth Des. 2021. V. 21. P. 1136.
  29. Soldatova N.S., Postnikov P.S., Suslonov V.V. et al. // Org. Chem. Front. 2020. V. 7. P. 2230.
  30. Hu C., Li Q., Englert U. // CrystEngComm. 2003. V. 5. P. 519.
  31. Wang A., Englert U. // Acta Crystallogr. C. 2017. V. 73. P. 803.
  32. Hu C., Kalf I., Englert U. // CrystEngComm. 2007. V. 9. P. 603.
  33. Zordan F., Brammer L. // Cryst. Growth Des. 2006. V. 6. P. 1374.
  34. Awwadi F.F., Alwahsh M.I., Turnbull M.M. et al. // Dalton Trans. 2021. V. 50. P. 4167.
  35. Puttreddy R., von Essen C., Rissanen K. // Eur. J. Inorg. Chem. 2018. P. 2393.
  36. Puttreddy R., von Essen C., Peuronen A. et al. // Cr-ystEngComm. 2018. V. 20. P. 1954.
  37. Vershinin M.A., Rakhmanova M.I., Novikov A.S. et al. // Molecules. 2021. V. 26. P. 3393.
  38. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  39. Da Chai J., Head-Gordon M. // Phys. Chem. Chem. Phys. 2008. V. 10. P. 6615.
  40. Zhao Y., Truhlar D.G. // Theor. Chem. Acc. 2008. V. 120. P. 215.
  41. Barros C.L., de Oliveira P.J.P., Jorge F.E. et al. // Mol. Phys. 2010. V. 108. P. 1965.
  42. Bader R.F.W. // Chem. Rev. 1991. V. 91. P. 893.
  43. Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. P. 580.
  44. Bondi A. // J. Phys. Chem. 1966. V. 70. P. 3006.
  45. Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. P. 5806.
  46. Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. P. 2478.
  47. Kinzhalov M.A., Kashina M.V., Mikherdov A.S. et al. // Angew. Chem. Int. Ed. 2018. V. 57. P. 12785.
  48. Bartashevich E.V, Tsirelson V.G. // Russ. Chem. Rev. 2014. V. 83. P. 1181.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (105KB)
3.

Download (212KB)

Copyright (c) 2023 М.А. Вершинин, А.С. Новиков, С.А. Адонин