Halide Complexes [(2-Br-5-MePy)2ZnX2] (X = Cl, Br): Structure and Noncovalent Interactions in the Crystal Structure
- Authors: Vershinin M.A.1, Novikov A.S.2,3, Adonin S.A.1
-
Affiliations:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- St. Petersburg State University, St. Petersburg, Russia
- Peoples’ Friendship University of Russia, Moscow, Russia
- Issue: Vol 49, No 5 (2023)
- Pages: 298-302
- Section: Articles
- URL: https://journals.eco-vector.com/0132-344X/article/view/667513
- DOI: https://doi.org/10.31857/S0132344X22600369
- EDN: https://elibrary.ru/POTLLQ
- ID: 667513
Cite item
Abstract
The heteroligand complexes [(2-Br-5-MePy)2ZnX2] (X = Cl (I), Br (II)) were prepared by the reaction of zinc(II) chloride or bromide with 2-bromo-5-methylpyridine and studied by X-ray diffraction (CCDC nos. 2204966 (I) and 2204967 (II)). The crystals of I and II contain Cl···Br and Br···Br halogen bonds, which connect the [MX2L2] moieties into supramolecular chains. The energies of these noncovalent interactions were estimated using quantum chemical calculations.
About the authors
M. A. Vershinin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: adonin@niic.nsc.ru
Россия, Новосибирск
A. S. Novikov
St. Petersburg State University, St. Petersburg, Russia; Peoples’ Friendship University of Russia, Moscow, Russia
Email: adonin@niic.nsc.ru
Россия, Санкт-Петербург; Россия, Москва
S. A. Adonin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Author for correspondence.
Email: adonin@niic.nsc.ru
Россия, Новосибирск
References
- Desiraju G.R., Ho P.S., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. P. 1711.
- Orlova A.V., Ahiadorme D.A., Laptinskaya T.V., Kononov L.O. // Russ. Chem. Bull. 2021. V. 70. P. 2214.
- Shestimerova T.A., Golubev N.A., Grigorieva A.V. // Russ. Chem. Bull. 2021. V. 70. P. 39.
- Isaev A.N. // Russ. J. Phys. Chem. A. 2019. V. 93. P. 2394.
- Novikov A.S., Gushchin A.L. // J. Struct. Chem. 2021. V. 62. P. 1325.
- Bartashevich E.V., Sobalev S.A., Matveychuk Y.V., Tsirelson V.G. // J. Struct. Chem. 2021. V. 62. P. 1607.
- Bokach N.A., Suslonov V.V., Eliseeva A.A. et al. // Cry-stEngComm. 2020. V. 22. P. 4180.
- Eliseeva A.A., Ivanov D.M., Novikov A.S. et al. // Dalton Trans. 2020. V. 49. P. 356.
- Farris P.C., Wall A.D., Chellali J.E. et al. // J. Coord. Chem. 2018. V. 71. P. 2487.
- Awwadi F.F., Turnbull M.M., Alwahsh M.I., Haddad S.F. // New J. Chem. 2018. V. 42. P. 10642.
- Awwadi F.F., Haddad S.F., Turnbull M.M. et al. // Cry-stEngComm. 2013. V. 15. P. 3111.
- Wu W.X., Wang H., Jin W.J. // CrystEngComm. 2020. V. 22. P. 5649.
- Sivchik V.V., Solomatina A.I., Chen Y.-T. et al. // Angew. Chem. Int. Ed. 2015. V. 54. P. 14057.
- Liu R., Gao Y.J., Jin W.J. // Acta Crystallogr. B. 2017. V. 73. P. 247.
- Katlenok E.A., Haukka M., Levin O.V. et al. // Chem. Eur. J. 2020. V. 26. P. 7692.
- Torubaev Y.V., Skabitsky I.V. // CrystEngComm. 2020. V. 22. P. 6661.
- Rozhkov A.V., Novikov A.S., Ivanov D.M. et al. // Cryst. Growth Des. 2018. V. 18. P. 3626.
- Kryukova M.A., Sapegin A.V., Novikov A.S. et al. // Crystals. 2020. V. 10. P. 371.
- Zelenkov L.E., Ivanov D.M., Avdontceva M.S. et al. // Z. Krist. Cryst. Mater. 2019. V. 234. P. 9.
- Novikov A.S., Ivanov D.M., Avdontceva M.S., Kukushkin V.Y. // CrystEngComm. 2017. V. 19. P. 2517.
- Torubaev Y.V., Skabitsky I.V. // Z. Krist. Cryst. Mater. 2020. V. 235. P. 599.
- Truong K.-N., Rautiainen J.M., Rissanen K., Puttreddy R. // Cryst. Growth Des. 2020. V. 20. P. 5330.
- Torubaev Y.V., Skabitskiy I.V., Pavlova A.V., Pasynskii A.A. // New J. Chem. 2017. V. 41. P. 3606.
- Shestimerova T.A., Yelavik N.A., Mironov A.V. et al. // Inorg. Chem. 2018. V. 57. P. 4077.
- Eich A., Köppe R., Roesky P.W., Feldmann C. // Eur. J. Inorg. Chem. 2019. P. 1292.
- Suslonov V.V., Soldatova N.S., Ivanov D.M. et al. // Cryst. Growth Des. 2021. V. 21. P. 5360.
- Soldatova N.S., Suslonov V.V., Kissler T.Y. et al. // Crystals. 2020. V. 10. P. 230.
- Aliyarova I.S., Ivanov D.M., Soldatova N.S. et al. // Cryst. Growth Des. 2021. V. 21. P. 1136.
- Soldatova N.S., Postnikov P.S., Suslonov V.V. et al. // Org. Chem. Front. 2020. V. 7. P. 2230.
- Hu C., Li Q., Englert U. // CrystEngComm. 2003. V. 5. P. 519.
- Wang A., Englert U. // Acta Crystallogr. C. 2017. V. 73. P. 803.
- Hu C., Kalf I., Englert U. // CrystEngComm. 2007. V. 9. P. 603.
- Zordan F., Brammer L. // Cryst. Growth Des. 2006. V. 6. P. 1374.
- Awwadi F.F., Alwahsh M.I., Turnbull M.M. et al. // Dalton Trans. 2021. V. 50. P. 4167.
- Puttreddy R., von Essen C., Rissanen K. // Eur. J. Inorg. Chem. 2018. P. 2393.
- Puttreddy R., von Essen C., Peuronen A. et al. // Cr-ystEngComm. 2018. V. 20. P. 1954.
- Vershinin M.A., Rakhmanova M.I., Novikov A.S. et al. // Molecules. 2021. V. 26. P. 3393.
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- Da Chai J., Head-Gordon M. // Phys. Chem. Chem. Phys. 2008. V. 10. P. 6615.
- Zhao Y., Truhlar D.G. // Theor. Chem. Acc. 2008. V. 120. P. 215.
- Barros C.L., de Oliveira P.J.P., Jorge F.E. et al. // Mol. Phys. 2010. V. 108. P. 1965.
- Bader R.F.W. // Chem. Rev. 1991. V. 91. P. 893.
- Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. P. 580.
- Bondi A. // J. Phys. Chem. 1966. V. 70. P. 3006.
- Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. P. 5806.
- Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. P. 2478.
- Kinzhalov M.A., Kashina M.V., Mikherdov A.S. et al. // Angew. Chem. Int. Ed. 2018. V. 57. P. 12785.
- Bartashevich E.V, Tsirelson V.G. // Russ. Chem. Rev. 2014. V. 83. P. 1181.
