Half-Sandwich Iminophosphonamide Rhodium Complexes as Highly Efficient Catalysts for Dehydrogenation of Dimethylamine-Borane

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The dehydrogenation of dimethylamine-borane (DMAB) catalyzed by the iminophosphonamide rhodium(III) complexes [Cp*RhCl{Ph2P(N–p-Tol)(NR)}] (Iа, R = p-Tol; Ib, R = Me) in situ formed fulvene [(η4-C5Me4CH2)Rh(NPN)] (IIa, IIb) and diene [(η4-C5Me5H)Rh(NPN)] (IIIa, IIIb) rhodium(I) derivatives is studied. Catalysts IIIa and IIIb turn out to be the most active and demonstrate a TOF activity of 110 (IIIа) and 540 h–1 (IIIb) at 40°С in toluene. The activity decreases significantly in more polar and coordinating THF. At the same time, the rate of DMAB dehydrogenation by complexes Iа and Ib is lower by 10–30 times, and fulvene complexes Iа and Ib are rapidly deactivated after the active initial period (<20% conversion). The kinetic studies show that the reaction has the first order with respect to the substrate and catalyst. The model 11В NMR experiments confirm that the reaction proceeds via the intermediate formation of a monomer Me2N=BH2, which rapidly dimerizes to (Me2N–BH2)2. The mechanism of DMAB dehydrogenation with the formation of unstable hydride intermediate [Cp*RhH{Ph2P(N–p-Tol)(NR)}] (IVa, IVb) is proposed on the basis of the preliminarily 31Р NMR results and published data.

全文:

受限制的访问

作者简介

R. Nekrasov

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: nataliabelk@ineos.ac.ru
俄罗斯联邦, Moscow

T. Peganova

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: nataliabelk@ineos.ac.ru
俄罗斯联邦, Moscow

A. Kal´sin

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: nataliabelk@ineos.ac.ru
俄罗斯联邦, Moscow

N. Belkova

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: nataliabelk@ineos.ac.ru
俄罗斯联邦, Moscow

参考

  1. Colebatch A.L., Weller A.S. // Chem. Eur. J. 2019. V. 25. P. 1379. https://doi.org/10.1002/chem.201804592
  2. Staubitz A., Robertson A.P.M., Manners I. // Chem. Rev. 2010. V. 110. p. 4079. https://doi.org/10.1021/cr100088b
  3. Du V.A., Jurca T., Whittell G.R., Manners I. // Dalton Trans. 2016. V. 45. P. 1055. https://doi.org/10.1039/C5DT03324A
  4. Resendiz-Lara D.A., Stubbs N.E., Arz M.I. et al. // Chem. Commun. 2017. V. 53. P. 11701.
  5. Kumar A., Daw P., Milstein D. et al. // Chem. Rev. 2022. V. 122. P. 385. https://doi.org/10.1021/acs.chemrev.1c00412
  6. Alig L., Fritz M., Schneider S. et al. // Chem. Rev. 2019. V. 119. P. 2681. https://doi.org/10.1021/acs.chemrev.8b00555
  7. Glüer A., Förster M., Celinski V. R. et al. // ACS Catal. 2015. V. 5. P. 7214. https://doi.org/10.1021/acscatal.5b02406
  8. Luconi L., Osipova E. S., Giambastiani G. et al. // Organometallics. 2018. V. 37. P. 3142. https://doi.org/10.1021/acs.organomet.8b00488
  9. Todisco., S., Luconi., L., Giambastiani., G et al. // Inorg. Chem. 2017. V. 56. P. 4296. https://doi.org/10.1021/acs.inorgchem.6b02673
  10. Titova. E.M., Osipova. E.S., Pavlov. A.A. et al. // ACS Catal. 2017. V. 7. P. 2325. https://doi.org/10.1021/acscatal.6b03207
  11. Sewell L.J., Huertos M.A., Dickinson M.E. et al. // Inorg. Chem. 2013. V. 52. P. 4509. https://doi.org/10.1021/ic302804d
  12. Johnson H.C., Leitao E.M., Whittell G.R. et al. // J. Am. Chem. Soc. 2014. V. 136. P. 9078. https://doi.org/10.1021/ja503335g
  13. Douglas T.M., Chaplin A.B., Weller A S. et al. // J. Am. Chem. Soc. 2009. V. 131. P. 15440. http://dx.doi.org/10.1021/ja906070r
  14. Kirkina V.A., Osipova E.S., Filippov O.A. et al. // Mendeleev Commun. 2020. V. 30. P. 276. https://doi.org/10.1016/j.mencom.2020.05.004
  15. Brodie C.N., Sotorrios L., Boyd T.M. et al. // ACS Catal. 2022, vol. 12. P. 13050. https://doi.org/10.1021/acscatal.2c03778
  16. Brodie C.N., Boyd T.M., Sotorríos L. et al. // J. Am. Chem. Soc. 2021. V. 143. P. 21010. https://doi.org/10.1021/jacs.1c10888
  17. White C., Yates A., Maitlis P.M. et al. // Inorg. Synth. 1992. V. 29. P. 228. https://doi.org/10.1002/9780470132609.ch53
  18. Nekrasov R.I., Peganova T.A., Fedyanin I.V. et al. // Inorg. Chem. 2022. V. 61. P. 16081. https://doi.org/10.1021/acs.inorgchem.2c02478
  19. Kruger C.R., Niederprum H. // Inorg. Synth. 1966. V. 8. P. 15.
  20. Pal S., Kusumoto S., Nozaki K. // Organometallics. 2018. V. 37. P. 906. https://doi.org/10.1021/acs.organomet.7b00889
  21. Sinopalnikova I.S., Peganova T.A., Belkova N.V. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. P. 2285. https://doi.org/10.1002/ejic.20170134423
  22. Pal S., Iwasaki T., Nozaki K. // Dalton Trans. 2021, V. 50. P. 7938. https://doi.org/10.1039/D1DT01705E
  23. Dallanegra R., Robertson A.P.M., Chaplin A. B. et al. // Chem. Commun. 2011. V. 47. P. 3763. https://doi.org/10.1039/C0CC05460G
  24. Gulyaeva E.S., Osipova E.S., Kovalenko S.A. et al. // Chem. Sci. 2024. V. 15. P. 1409. https://doi.org/10.1039/D3SC05356C

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1. Synthesis of complexes IIa, IIb and IIIa, IIIb.

下载 (98KB)
3. Scheme 2. The proposed isomerization of IIIa in IVa under the action of DMAB, accompanied by the transfer of a hydrogen atom from Cp*H to the Rh atom and the release of H2.

下载 (124KB)
4. Fig. 1. Dehydrogenation of DMAB catalyzed by complexes IIIa, IIIb in toluene and THF. Conditions: T = 40°C, [Rh] = 5.8 mM, [DMAB] = 0.145 M, Vp-ra = 2.1 ml.

下载 (85KB)
5. Fig. 2. Dehydrogenation of DMAB catalyzed by complexes Ia, Ib and IIa, IIb in toluene, in comparison with IIIa, IIIb. Conditions: T = 40°C, [Rh] = 2.9 mM, [DMAB] = 0.145 M, Vp-ra = 2.1 ml.

下载 (105KB)
6. Fig. 3. Dehydrogenation of DMAB (0.145 M) catalyzed by complex IIIb at 40 °C in toluene, depending on the concentration of the catalyst: first-order kinetic curves (left) and the dependence of knabl on [Rh].

下载 (158KB)
7. Fig. 4. Kinetics of dehydrogenation of DMAB (0.085 M, δB = 13 m.d.) catalyzed by complex IIIa (0.008 M) at 18 ° C in toluene-d8. Changes in the NMR spectrum of the 11V mixture.

下载 (262KB)
8. Fig. 5. Graphs of changes in the relative concentrations of boron-containing reaction products (left) and a first-order kinetic curve with calculation of the observed reaction rate constant (right). The conditions are as shown in Fig. 4.

下载 (118KB)

版权所有 © Российская академия наук, 2024