Reactions of carbon dioxide bound to aluminum diimine hydride with borane dimethyl sulfide and ammonia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The reaction of aluminum bis-formate acenaphthene-1,2-diimine complex [(ArBIG-bian)Al(μ-OC(H)O)2Li(Thf)2] (I) (ArBIG-bian = 1,2-bis[(2,6-dibenzhydryl-4-methylphenyl)imino]acenaphthene), prepared by binding carbon dioxide by aluminum diimine hydride [(ArBIG-bian)Al(H)2]–[Li(Thf)4]+, with borane dimethyl sulfide and ammonia was studied. The reaction of I with BH3∙SMe2 (1 : 1) in toluene affords the product of hydroboration of one formate group [(ArBIG-bian)Al(μ-OC(H)O)(OB(H)OCH3)Li(Thf)]2 (II), while the reaction of I with BH3∙SMe2 (1 : 2) is accompanied by reduction of both formate groups and gives complex [(ArBIG-bian)Al(OBOCH3)2OLi2(Thf)2BH4]2 (III), methoxyboroxine (CH3OBO)3 and, presumably, compound [(ArBIG-bian)AlOCH3]. The reaction of I with one equivalent of ammonia in THF gives adduct [(ArBIG-bian)Al(NH3)(μ-OC(H)O)2Li(Thf)2] (IV), in which ammonia is coordinated to the aluminum atom, while the key bonds in I have not undergone ammonolysis. Compounds II–IV were characterized by IR and NMR spectroscopy, elemental analysis, and X-ray diffraction (CCDC no. 2255017 (II), 2255018 (III), 2255019 (IV)).

Full Text

Restricted Access

About the authors

M. V. Moskalev

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: skatova@iomc.ras.ru
Russian Federation, Nizhny Novgorod

A. A. Skatova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: skatova@iomc.ras.ru
Russian Federation, Nizhny Novgorod

A. А. Bazanov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: skatova@iomc.ras.ru
Russian Federation, Nizhny Novgorod

E. V. Baranov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: skatova@iomc.ras.ru
Russian Federation, Nizhny Novgorod

I. L. Fedushkin

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: skatova@iomc.ras.ru
Russian Federation, Nizhny Novgorod

References

  1. Lamb W.F., Wiedmann T., Pongratz J. et al. // Environ. Res. Lett. 2021. V. 16. P. 073005.
  2. Liu Q., Wu L., Jackstell R. et al. // Nat. Commun. 2015. V. 6. P. 5933.
  3. Wang W.-H., Himeda Y., Muckerman J.T. et al. // Chem. Rev. 2015. V. 115. № 23. P. 12936.
  4. Wang W.-H., Feng X., Bao M. Transformation of Carbon Dioxide to Formic Acid and Methanol. SpringerBriefs in Molecular Science, Springer Nature, Switzerland AG, 2018. 128 p.
  5. Ye R.-P., Ding J., Gong W. et al. // Nat. Commun. 2019. V. 10. P. 5698.
  6. Zhang Y., Zhang T., Das S. // Green Chem. 2020. V. 22. P. 1800.
  7. Ren M., Zhang Y., Wang X. et. al. // Catalysts 2022. V. 12. P. 403.
  8. Navarro M., Sánchez-Barba L.F., Garcés A. et al. // Catal. Sci. Technol. 2020. V. 10. P. 3265.
  9. Laiwattanapaisarn N., Virachotikul A., Phomphrai K. // Dalton Trans. 2021. V. 50. P. 11039.
  10. Yepes Y.R., Mesías-Salazar Á., Becerra A. et al. // Organometallics. 2021. V. 40. P. 2859.
  11. Saltarini S., Villegas-Escobar N., Martínez J. et al. // Inorg. Chem. 2021. V. 60. P. 1172.
  12. Rauch M., Parkin G. // J. Am. Chem. Soc. 2017. V. 139. P. 18162.
  13. Rauch M., Strater Z., Parkin G. // J. Am. Chem. Soc. 2019. V. 141. P. 17754.
  14. Huang W., Roisnel T., Dorcet V. et al. // Organometallics. 2020. V. 39. P. 698.
  15. Caise A., Hicks J., Fuentes M.A. et al. // Chem. Eur. J. 2021. V. 27. P. 2138.
  16. Anker M.D., Arrowsmith M., Bellham P. et al. // Chem. Sci. 2014. V. 5. P. 2826.
  17. Yan B., Dutta S., Ma X. et al. // Dalton Trans. 2022. V. 51. P. 6756.
  18. Abdalla J.A.B., Riddlestone I.M., Tirfoin R. et al. // Angew. Chem. Int. Ed. 2015. V. 54. P. 5098.
  19. Franz D., Jandl C., Stark C. et al. // ChemCatChem. 2019. V. 11. P. 5275.
  20. Chia C.-C., Teo Y.-C., Cham N. et al. // Inorg. Chem. 2021. V. 60. P. 4569.
  21. Caise A., Jones D., Kolychev E.L. et al. // Chem. Eur. J. 2018. V. 24. 13624.
  22. Sokolov V.G., Koptseva T.S., Moskalev M.V. et al. // Russ. Chem. Bull. 2017. V. 66. № 9. P. 1569. https://doi.org/10.1007/s11172-017-1926-1
  23. Moskalev M.V., Razborov D.A., Bazanov A.A. et al. // Mendeleev Commun. 2020. V. 30. P. 94.
  24. Koptseva T.S., Moskalev M.V., Skatova A.A. et al. // Inorg. Chem. 2022. V. 61. P. 206.
  25. Moskalev M.V., Sokolov V.G., Koptseva T.S. et al. // J. Organomet. Chem. 2021. V. 949. P. 121972.
  26. Koptseva T.S., Moskalev M.V., Skatova A.A. et al. // Russ. Chem. Bull. 2022. V. 71. № 8. P. 1626. https://doi.org/10.1007/s11172-022-3571-6
  27. Koptseva T.S., Skatova A.A., Ketkov S.Y. et al. // Organometallics. 2023. V. 42. P. 123.
  28. Guzmán J., Torguet A., García-Orduña P. et al. // J. Organomet. Chem. 2019. V. 897. P. 50.
  29. Li Z., Yu Z., Luo X. et al. // RSC Adv. 2020. V. 10. P. 33972.
  30. Lin S., Liu J., Ma L. // J. CO2 Util. 2021. V. 54. P. 101759.
  31. Zhai G., Liu Q., Ji J. et al. // J. CO2 Util. 2022. V. 61. P. 102052.
  32. APEX3. Bruker Molecular Analysis Research Tool. Version 2018.7-2. Madison (WI, USA): Bruker AXS Inc., 2018.
  33. SAINT. Data Reduction and Correction Program. Version 8.38A. Madison (WI, USA): Bruker AXS Inc., 2017.
  34. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
  35. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  36. Sheldrick G.M. SHELXTL. Version 6.14. Structure Determination Software Suite. Madison (WI, USA): Bruker AXS, 2003.
  37. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  38. Sheldrick G.M. SADABS. Version 2016/2. Bruker/Siemens Area Detector Absorption Correction Program. Madison (WI, USA): Bruker AXS, 2016.
  39. Leong B.-X., Lee J., Li Y. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 17629.
  40. Saxena P., Thirupathi N. // Polyhedron. 2015. V. 98. P. 238.
  41. Lago A.B., Carballo R., Lezama L. et al. // J. Solid State Chem. 2015. V. 231. P. 145.
  42. Yang L., Powell D.R., Houser R.P. // Dalton Trans. 2007. P. 955.
  43. Ruiz J.C.G., Nöth H., Warchhold M. // Eur. J. Inorg. Chem. 2008. P. 251.
  44. Yang Z., Ma X., Oswald R.B. et al. // J. Am. Chem. Soc. 2006. V. 128. P. 12406.
  45. Ma X., Yang Z., Wang X. et al. // Inorg. Chem. 2011. V. 50. P. 2010.
  46. Ma X., Zhong M., Liu Z. et al. // Z. Kristallogr. NCS. 2012. V. 227. P. 580.
  47. Yang Z., Hao P., Liu Z. et al. // J. Organomet. Chem. 2014. V. 751. P. 788.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1.

Download (112KB)
3. Scheme 2.

Download (210KB)
4. Scheme 3.

Download (136KB)
5. Scheme 4.

Download (72KB)
6. Fig. 1. Molecular structure of complex II. Thermal ellipsoids are shown with 30% probability. Hydrogen atoms, except those bonded to C(79), C(80), C(79)′, C(80)′, B(1), and B(1)′ atoms, as well as 2,6-dibenzhydryl-4-methylphenyl substituents at nitrogen atoms, are not shown.

Download (117KB)
7. Fig. 2. Molecular structure of complex III. Thermal ellipsoids are shown with 30% probability. Hydrogen atoms, except for those bonded to C(79), C(80), C(79)′, C(80)′, B(1), and B(1)′ atoms, as well as 2,6-dibenzhydryl-4-methylphenyl substituents at nitrogen atoms are not shown.

Download (151KB)
8. Fig. 3. Molecular structure of complex IV. Thermal ellipsoids are shown with 30% probability. Hydrogen atoms, except those bound to N(3), C(79), and C(80) atoms, are not shown.

Download (110KB)

Copyright (c) 2024 Российская академия наук