Gold(I) Chloride Complexes with 4-Halo-substituted Phenyl Isocyanide Ligands

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A series of gold(I) monoisocyanide [AuCl(C6H4–4-X)] (X = Cl (IIa), Br (IIb), I (IIc) and bis-isocyanide [Au(C6H4–4-X)2](PF6) (X = Cl (IIIa), Br (IIIb), I (IIIc) complexes were prepared by the reaction of [AuCl(Tht)] (Tht = tetrahydrothiophene) with the specified isocyanide. The molecular structure of IIaIIc was established by X-ray diffraction (CCDC no. 2253450 (IIa), 2253447 (IIb), 2253448 (IIc)). The crystals of IIb and IIc are isostructural; they were found to have several types of intermolecular interactions, particularly, C–X⋯Cl – Au halogen bonds, π-hole (CCNR) ⋯ (Au) interactions, and Au⋯Au aurophilic contacts, which form together a two-layer 2D supramolecular polymer. The crystals of IIb, IIc and IIIa, IIIb exhibit phosphorescence at room temperature; compounds IIa and IIIc do not possess luminescent properties; and mechanical grinding of IIaIIc and IIIaIIIc powders does not change the photophysical properties.

About the authors

G. A. Gavrilov

St. Petersburg State University

Email: m.kinzhalov@spbu.ru
Russian Federation, St. Petersburg

K. N. Davletbaeva

St. Petersburg State University

Email: m.kinzhalov@spbu.ru
Russian Federation, St. Petersburg

M. A. Kinzhalov

St. Petersburg State University

Author for correspondence.
Email: m.kinzhalov@spbu.ru
Russian Federation, St. Petersburg

References

  1. Yam V.W.W., Law A.S.Y. // Coord. Chem. Rev. 2020. V. 414. P. 213298.
  2. Seifert T.P., Naina V. R., Feuerstein T. J. et al. // Nanoscale. 2020. V. 12. № 39. P. 20065.
  3. Kinzhalov M.A., Grachova E. V., Luzyanin K. V. // Inorg. Chem. Front. 2022. V. 9. P. 417.
  4. Pazderski L., Abramov P. A. // Inorganics. 2023. V. 11. № 3. P. 100.
  5. Wing-Wah Y.V., Chung-Chin C. E. Photochemistry and Photophysics of Coordination Compounds: Gold. Photochemistry and Photophysics of Coordination Compounds II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. P. 269.
  6. Yam V.W.-W., Au V. K.-M., Leung S. Y.-L. // Chem. Rev. 2015. V. 115. № 15. P. 7589.
  7. Tang M.-C., Chan M.-Y., Yam V. W.-W. // Chem. Rev. 2021. V. 121. № 13. P. 7249.
  8. Tang M.-C., Chan A. K.-W., Chan M.-Y. et al. // Top. Curr. Chem. 2016. V. 374. № 4. Р. 46.
  9. Shmelev N.Y., Okubazghi T. H., Abramov P. A. et al. // Dalton Trans. 2021. V. 50. № 36. Р. 12448.
  10. Lin Y., Jiang C., Hu F. et al. // Dyes Pigm. 2013. V. 99. № 3. Р. 995.
  11. Lu T., Zhang F., Wang X.-Y. et al. // Dyes Pigm. 2021. V. 186. Р. 108964.
  12. Au V.K.-M., Wu D., Yam V. W.-W. // J. Am. Chem. Soc. 2015. V. 137. № 14. P. 4654.
  13. Okubazghi T.H., Abramov P. A. et al. // Cryst. Growth Des. 2022. V. 22. № 6. Р. 3882.
  14. Chan M.H.-Y., Yam V. W.-W. // J. Am. Chem. Soc. 2022. V. 144. № 50. P. 22805.
  15. Girish Y.R., Prashantha K., Byrappa K. // Emerg. Mater. 2021. V. 4. № 3. P. 673.
  16. Pyykkö P. // Chem. Rev. 1997. V. 97. № 3. P. 597.
  17. Dyadchenko V.P., Belov N. M., Dyadchenko M. A. et al. // Russ. Chem. Bull. 2010. V. 59. № 3. Р. 539.
  18. Fujisawa K., Kawakami N., Onishi Y. et al. // J. Mater. Chem. C. 2013. V. 1. № 34. P. 5359.
  19. Mathieson T., Schier A., Schmidbaur H. // Dalton Trans. 2001. № 8. P. 1196.
  20. Seki T., Sakurada K., Muromoto M. et al. // Chem. Eur. J. 2016. V. 22. № 6. P. 1968.
  21. Minghetti G., Bonati F. // Inorg. Chem. 1974. V. 13. № 7. P. 1600.
  22. Eggleston D.S., Chodosh D. F., Webb R. L. et al. // Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1986. V. 42. № 1. P. 36.
  23. Irwin M.J., Jia G., Payne N. C. et al. // Organometallics. 1996. V. 15. № 1. Р. 51.
  24. Lentz D., Willemsen S. // J. Organomet. Chem. 2000. V. 612. № 1. P. 96.
  25. Liau R.-Y., Mathieson T., Schier A. et al. // Z. Naturforsch. B. 2002. V. 57. № 8. P. 881.
  26. Schneider W., Angermaier K., Sladek A. et al. // Z. Naturforsch. B. 1996. V. 51. № 6. P. 790.
  27. White-Morris R.L., Olmstead M. M., Balch A. L. et al. // Inorg. Chem. 2003. V. 42. № 21. P. 6741.
  28. White-Morris R.L., Stender M., Tinti D. S. et al. // Inorg. Chem. 2003. V. 42. № 10. P. 3237.
  29. Schmidbaur H., Schier A. // Chem. Soc. Rev. 2008. V. 37. № 9. P. 1931.
  30. Wang C., Li Z. // Mater. Chem. Front. 2017. V. 1. № 11. P. 2174.
  31. Varughese S. // J. Mater. Chem. C. 2014. V. 2. № 18. P. 3499.
  32. Sokolova E.V., Kinzhalov M. A., Smirnov A. S. et al. // ACS Omega. 2022. V. 7. № 38. P. 34454.
  33. Wang W., Zhang Y., Jin W. J. // Coord. Chem. Rev. 2020. V. 404. P. 213107.
  34. Koshevoy I.O., Krause M., Klein A. // Coord. Chem. Rev. 2020. V. 405. P. 213094.
  35. Kashina M. V., Mikherdov A. S. et al. // Angew. Chem. Int. Ed. 2018. V. 57. № 39. P. 12785.
  36. Kashina M.V., Kinzhalov M. A., Smirnov A. S. et al. // Chem. Asian J. 2019. V. 14. P. 3915.
  37. Kryukova M.A., Ivanov D. M., Kinzhalov M. A. et al. // Chem. Eur. J. 2019. V. 25. P. 13671.
  38. Kashina M.V., Ivanov D. M., Kinzhalov M. A. // Crystals. 2021. V. 11. № 7. P. 799.
  39. Hubschle C.B., Sheldrick G. M., Dittrich B. // J. Appl. Crystallogr. 2011. 44. № 6. P. 1281.
  40. Dolomanov O.V., Bourhis L. J., Gildea R. J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339.
  41. CrysAlisPro. Agilent Technologies. Version 1.171.36.20 (release 27–06–2012). Yarnton, England, 2009.
  42. Seki T., Takamatsu Y., Ito H. // J. Am. Chem. Soc. 2016. V. 138. № 19. P. 6252.
  43. Wang M.-J., Wang Z.-Y., Luo P. et al. // Cryst. Growth Des. 2019. V. 19. № 2. P. 538.
  44. Stephany R.W., de Bie M. J.A., Drenth W. // Org. Magn. Reson. 1974. V. 6. № 1. P. 45.
  45. Kinzhalov M.A., Boyarskii V. P. // Russ. J. Gen. Chem. 2015. V. 85. № 10. P. 2313.
  46. Anisimova T.B., Kinzhalov M. A., Guedes da Silva M. F.C. et al. // New J. Chem. 2017. V. 41. № 9. P. 3246.
  47. Eggleston D.S., Chodosh D. F., Webb R. L. et al. // Acta Crystallogr. C. 1986. V. 42. № 1. P. 36.
  48. Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441.
  49. Alvarez S. // Dalton Trans. 2013. V. 42. № 24. P. 8617.
  50. Desiraju G. R., Ho P. S., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. P. 1711.
  51. Ivanov D.M., Kinzhalov M. A., Novikov A. S. et al. // Cryst. Growth Des. 2017. V. 17. P. 1353.
  52. Katkova S.A., Mikherdov A. S., Kinzhalov M. A. et al. // Chem. Eur. J. 2019. V. 25. Р. 8590.
  53. Katkova S.A., Mikherdov A. S., Sokolova E. V. et al. // J. Mol. Struct. 2022. V. 1253. P. 132230.
  54. Carlos L.J., Rodríguez L. // Chem. Soc. Rev. 2011. V. 40. № 11. P. 5442.
  55. Coco S., Cordovilla C., Domínguez C. et al. // Dalton Trans. 2008. V. 48. P. 6894.
  56. Dong Y.-B., Chen Z., Yang L. et al. // Dyes Pigm. 2018. V. 150. P. 315.
  57. Irwin M.J., Vittal J. J., Puddephatt R. J. // Organo me tallics. 1997. V. 16. № 15. P. 3541.
  58. Seki T., Ida K., Sato H. et al. // Chem. Eur. J. 2020. V. 26. № 3. P. 735.
  59. Xiao H., Cheung K.-K., Che C.-M. // Dalton Trans. 1996. V. 18. P. 3699.
  60. Yam V.W.-W., Cheng E. C.-C. // Chem. Soc. Rev. 2008. V. 37. № 9. P. 1806.
  61. Shakirova J.R., Grachova E. V., Sizov V. V. et al. // Dalton Trans. 2017. V. 46. № 8. P. 2516.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Российская академия наук