Layered Coordination Polymers Based on the Cluster Complexes [Re6Q8(CN)6]4– (Q = S or Se) and Dimeric Cations {(Ag(Dppe))2(μ-Dppe)}2+

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The reactions of salts of cluster anions [Re6Q8(CN)6]4– with the [Ag(CN)2] dicyanoargentate anion in the presence of 1,2-bis(diphenylphosphino)ethane are studied. Two new coordination polymers, [{(Ag(Dppe))2 (µ-Dppe)}2{Re6S8(CN)6}]⋅H2O (I) and [{(Ag(Dppe))2(µ-Dppe)}2{Re6Se8(CN)6}]0,85[{(Ag(Dppe))(Ag(DppeSe))(µ-Dppe)}2{Re6Se8(CN)6}]0,15 (II), are prepared by the solvothermal synthesis. The XRD study of single crystals of the compounds (CIF files CCDC nos. 2341356 (I) and 2341355 (II)) shows their layered structures. The XRD study of crystalline powders of the compounds shows that the synthesis of compound II leads to the formation of two crystalline phases, one of which is isostructural to compound I. The luminescence parameters of the solid-state compounds (quantum yields, emission lifetimes) resemble the parameters of other coordination polymers based on the [Re6Q8(CN)6]4– ions.

Full Text

Restricted Access

About the authors

Yu. M. Litvinova

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: yuri@niic.nsc.ru
Russian Federation, Novosibirsk

Ya. M. Gaifulin

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: yuri@niic.nsc.ru
Russian Federation, Novosibirsk

T. S. Sukhikh

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: yuri@niic.nsc.ru
Russian Federation, Novosibirsk

K. A. Brylev

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: yuri@niic.nsc.ru
Russian Federation, Novosibirsk

Yu. V. Mironov

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: yuri@niic.nsc.ru
Russian Federation, Novosibirsk

References

  1. Sheldon J.C. // J. Chemi. Soc. (Resumed). 1962. P. 410.
  2. McCarley R.E. // Brown T.M., Inorg. Chem. 1964. Vol. 3. № 9. P. 1232.
  3. Kuhn P.J., McCarley R.E. // Inorg. Chem. 1965. Vol. 4. № 10. P. 1482.
  4. Spangenberg M. Bronger W. //Angew. Chem. Int. Ed. 1978. Vol. 17. № 5. P. 368.
  5. Robin M., Dumait N., Amela-Cortes M., et al. // Chem. Eur. J. 2018. Vol. 24. № 19. P. 4825.
  6. Sokolov M.N., Brylev K.A., Abramov P.A., et al. // Eur. J. Inorg. Chem. 2017. Vol. 2017. № 35. P. 4131.
  7. Muravieva V.K., Gayfulin Y.M., Ryzhikov M.R., et al. // Dalton Trans. 2018. Vol. 47. № 10. P. 3366.
  8. Vorotnikova N.A., Vorotnikov Y.A., Shestopalov M.A. // Coord. Chem. Rev. 2024. Vol. 500. №, P. 215543.
  9. Kirakci K., Shestopalov M.A., Lang K. // Coord. Chem. Rev. 2023. Vol. 481. P. 215048.
  10. Nguyen N.T.K., Lebastard C., Wilmet M., et al. // Sci.Technol. Adv. Mater. 2022. Vol. 23. № 1. P. 547.
  11. Yoshimura T., Ishizaka S., Sasaki Y., et al. // Chem. Lett. 1999. Vol. 28. № 10. P. 1121.
  12. Ларина Т.В., Икорский В.Н., Васенин Н.Т. и др. // Коорд. химия. 2002. Т. 28. № 8. С. 591.
  13. Litvinova Y.M., Gayfulin Y.M., Kovalenko K.A., et al. // Inorg. Chem. 2018. Vol. 57. № 4. P. 2072.
  14. Litvinova Y.M., Gayfulin Y.M., Van Leusen J., et al. // Inorg. Chem. Front. 2019. Vol. 6. № 6. P. 1518.
  15. Ulantikov A.A., Gayfulin Y.M., Sukhikh T.S., et al. // J. Struct. Chem. Engl. Tr. 2021. Vol. 62. № 7. P. 1009.
  16. Naumov N.G., Virovets A.V., Sokolov M.N., et al. // Angew. Chem. Int. Ed. 1998. Vol. 37. № 13-14. P. 1943.
  17. Naumov N.G., Virovets A.V., Artemkina S.B., et al. // J. Solid State Chem. 2004. Vol. 177. № 6. P. 1896.
  18. Artemkina S.B., Naumov N.G., Virovets A.V., et al. // Inorg. Chem. Commun. 2001. Vol. 4. № 8. P. 423.
  19. Niu G.-H., Wentz H.C., Zheng S.-L., Campbell. M.G. // Inorg. Chem. Commun. 2019. Vol. 101. P. 142.
  20. Medici S., Peana M., Crisponi G., et al. // Coord. Chem. Rev. 2016. Vol. 327−328. P. 349.
  21. Hamze R., Shi S., Kapper S.C., et al. // J. Am. Chem. Soc. 2019. Vol. 141. № 21. P. 8616.
  22. Kakizoe D., Nishikawa M., Degawa T., Tsubomura T. // Inorg. Chem. Front. 2016. Vol. 3. № 11. P. 1381.
  23. Romanov A.S., Jones S.T.E., Yang L., et al. // Adv. Opt. Mate. 2018. Vol. 6. № 24. P. 1801347.
  24. Lin Y.-Y., Lai S.-W., Che C.-M., et al. // Inorg. Chem. 2005. Vol. 44. № 5. P. 1511.
  25. Schmidbaur H., Schier A. // Angew. Chem. Int. Ed. 2015. Vol. 54. № 3. P. 746.
  26. Wing-Wah Yam V., Kam-Wing Lo. K., et al. // Coord. Chem. Rev. 1998. Vol. 171. P. 17.
  27. Tsukuda T., Kawase M., Dairiki A., et al. // Chem. Commun. 2010. Vol. 46. № 11. P. 1905.
  28. Chen J., Teng T., Kang L., et al. // Inorg. Chem. 2016. Vol. 55. № 19. P. 9528.
  29. Osawa M., Hashimoto M., Kawata I., Hoshino M. // Dalton Trans. 2017. Vol. 46. № 37. P. 12446.
  30. Artem’ev A.V., Shafikov M.Z., Schinabeck A., et al. // Inorg. Chem. Front. 2019. Vol. 6. № 11. P. 3168-3176.
  31. Litvinova Y.M., Gayfulin Y.M., Sukhikh T.S., et al. // Molecules. 2022. Vol. 27. № 22. P. 7684.
  32. Naumov N.G., Virovets A.V., Podberezskaya N.V., Federov V.E. // Zh. Strukt. Khim. 1997. № 5. P. 1018.
  33. Mironov Y.V., Virovets A.V., Fedorov V.E., et al. // Polyhedron. 1995. Vol. 14. № 20. P. 3171.
  34. Sheldrick G.M. et al. // Acta Crystallogr. A. 2015. Vol. 71. P. 3.
  35. Sheldrick G. et al. // Acta Crystallogr. C. 2015. Vol. 71. № 1. P. 3.
  36. Dolomanov O.V., Bourhis L.J., Gildea R.J., et al. // Appl. Crystallogr. 2009. Vol. 42. № 2. P. 339.
  37. Zhao Q., Freeman J.L., Wang J., et al. // Inorg. Chem. 2012. Vol. 51. № 4. P. 2016.
  38. Canales S., Villacampa M.D., Laguna A., Gimeno M.C. // J. Organomet. Chem. 2014. Vol. 760. P. 84.
  39. Sekar P., Ibers J.A., et al. // Inorg. Chim. Acta. 2001. Vol. 319. № 1. P. 117.
  40. Effendy, Di Nicola C., Nitiatmodjo M., et al. // Inorg. Chim. Acta. 2005. Vol. 358. № 3. P. 73547.
  41. Huahui Y., Lansun Z., Yunjie X., Qianer Z. // Chin. J. Inorg. Chem. 1992. Vol. 8. №, P. 65.
  42. Fournier E., Sicard S., Decken A., Harvey. P.D. // Inorg. Chem. 2004. Vol. 43. № 4. P. 1491.
  43. Wang Y.-F., Cui Y.-Z., Li Z.-F., et al. // Chin. J. Struct. Chem. 2017. Vol. 36. P. 812.
  44. Zhang Y.-R., Wang M.-Q., Cui Y.-Z., et al. // Chin. J. Inorg. Chem. 2015. Vol. 31. P. 2089.
  45. Wei X., Xu C., Li H., et al. // Chem. Sci. 2022. Vol. 13. № 19. P. 5531.
  46. Gao S., Li Z.-F., Liu M., et al. // Polyhedron. 2014. Vol. 83. P. 10.
  47. Harker C.S.W., Tiekink E.R.T. // J. Coord. Chem. 1990. Vol. 21. № 4. P. 287.
  48. Healy P.C., Loughrey B.T., Williams M.L. // Aust. J. Chem. 2012. Vol. 65. P. 811.
  49. Lin S., Li. Y., Cui Y.-Z., et al. // Chin. J. Inorg. Chem. 2016. Vol. 32. P. 2165.
  50. Chee C.F., Lo K.M., Ng S.W. // Acta Crystallogr. E. 2003. Vol. 59. № 5. P. m273.
  51. Teo Y.Y., Lo. K., Ng S. // Acta Crystallogr. E. 2008. Vol. 64. P. m819.
  52. Teo Y.Y., Lo K., Ng. S. // Acta Crystallogr. E. 2007. Vol. 63. №, P. M1365-M1367.
  53. Shafaei-Fallah M., Anson C.E., Fenske D., Rothenberger A. // Dalton Trans. 2005. Vol., № 13. P. 2300.
  54. Kühnert J., Hahn H., Rüffer T., et al. // J. Organomet. Chem. 2013. Vol. 725. P. 60.
  55. Li L.-L., Ren Z.-G., Wang J., et al. // J. Mol. Struct. 2008. Vol. 886. № 1. P. 121.
  56. Wang X.-J., Langetepe T., Fenske D., Kang. B.-S. // Z. Anorg. Allg. Chem. 2002. Vol. 628. № 5. P. 1158.
  57. Effendy, di Nicola C., Pettinari C., Pizzabiocca A., et al. // Inorg. Chim. Acta. 2006. Vol. 359. № 1. P. 64.
  58. Teo P., Koh L.L., Hor T.S.A. // Chem. Commun. 2007. Vol., № 41. P. 4221.
  59. Deng L.-R., Wang X.-J., Xiao W., et al. // Chem. Res. Chin. Univ. 2000. № 4. P. 375.
  60. Aslanidis P., Cox P.J., Divanidis S., Karagiannidis P. // Inorg. Chim. Acta. 2004. Vol. 357. № 9. P. 2677.
  61. Jin Q.-H., Yuan Y., Yang Y.-P., et al. // Polyhedron. 2015. Vol. 101. P. 56.
  62. Crespo O., Gimeno M.C., Laguna A., et al. // Dalton Trans. 2014. Vol. 43. № 32. P. 12214.
  63. Fenske D., Rothenberger A., Shafaei Fallah M. // Eur. J. Inorg. Chem. 2005. Vol. 2005. № 1. P. 59.
  64. Zhang L., Lü X.-Q., Zhang Q., et al. // Trans. Met. Chem. 2005. Vol. 30. № 1. P. 76.
  65. Dennehy M., Quinzani O.V., Mandolesi S.D., Burrow R.A. // J. Mol. Struct. 2011. Vol. 998. № 1. P. 119.
  66. Yang X., Isaac I., Persau C., et al. // Inorg. Chim. Acta. 2014. Vol. 421. P. 233.
  67. Mingsheng H., Peng Z., Ying Z., et al. // Acta Phys. Chim. Sin. 1991. Vol. 7. P. 694.
  68. Shawkataly O.B., Sani N.F.A., Rosli M.M., Razali M.R. // Z. Anorg. Allg. Chem. 2016. Vol. 642. № 5. P. 419.
  69. Gray T.G., Rudzinski C.M., Meyer E.E., et al. // J. Am. Chem. Soc. 2003. Vol. 125. № 16. P. 4755.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Fragment of the structure of compound I with numbering of symmetrically independent atoms (thermal ellipsoids of 75% probability are given, hydrogen atoms are not shown)

Download (365KB)
3. Fig. 2. Coordination environment of Ag(1), Ag(2), Ag(4) and Ag(5) atoms

Download (99KB)
4. Fig. 3. Structure of the dimeric fragment [{Ag(Dppe)}2µ-Dppe]2+ in compound I. Hydrogen atoms as well as phenyl rings of the bridging molecule Dppe are not shown

Download (179KB)
5. Fig. 4. Fragment of the layered structure of compound I. S atoms, Dppe phenyl ring molecules and H2O solvate molecules are not shown

Download (334KB)
6. Fig. 5. Independent fragment of the structure of compound II with numbering of heavy symmetrically independent atoms showing the ligands Dppe (a) and DppeSe (b) coordinated to the disordered Ag(2) (a) or Ag(2B) (b) atom, respectively. Thermal ellipsoids of 75% probability are given. Hydrogen atoms are not shown

Download (886KB)
7. Fig. 6. Coordination environment of Ag(1), Ag(2A) and Ag(2B) atoms in compound II

Download (117KB)
8. Fig. 7. Structure of the dimeric fragment {(Ag(Dppe))2(µ-Dppe)}2+ in compound II. Hydrogen atoms are not shown

Download (197KB)
9. Fig. 8. Fragment of the layered structure of compound II. Se atoms, phenyl rings of Dppe molecules and hydrogen atoms are not shown

Download (308KB)
10. Fig. 9. Experimental powder diffractogram of compound I in a polycrystalline sample (bottom) in comparison with the calculated one based on the structure of a single crystal (top)

Download (62KB)
11. Fig. 10. Experimental powder diffractogram of compound II in a polycrystalline sample (bottom) in comparison with the calculated structures of single crystals of compounds I (top, solid line) and II (top, dotted line)

Download (68KB)
12. Fig. 11. Photoluminescence spectra of compounds I and II

Download (80KB)

Copyright (c) 2024 Российская академия наук