Synthesis and X-ray Structures of Polymeric Calcium Carboxylates
- Authors: Samulionis A.S.1, Voronina J.K.1, Melnikov S.N.1, Gavronova A.S.1, Utepova D.A.1, Gogoleva N.V.1, Goloveshkin A.S.2, Yambulatov D.S.1, Nikolaevskii S.A.1, Kiskin M.A.1, Eremenko I.L.1
-
Affiliations:
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
- Issue: Vol 50, No 9 (2024)
- Pages: 613-626
- Section: Articles
- URL: https://journals.eco-vector.com/0132-344X/article/view/667667
- DOI: https://doi.org/10.31857/S0132344X24090084
- EDN: https://elibrary.ru/LXIOMZ
- ID: 667667
Cite item
Abstract
The reactions of calcium hydroxide with pivalic, 1-naphthoic, and 2-furancarboxylic acids afford the corresponding polymeric calcium carboxylates. Depending on the crystallization conditions, calcium pivalate is isolated as two different coordination polymers: [Ca3(Piv)6(DMF)2]n · 0.635nC6H6 · 0.365nDMF (I) and [Ca(Рiv)(H2O)2.333(DMF)0.666]n · nРiv·0.333H2O (II). The synthesized calcium 1-naphthoate contains coordinated water molecules [Сa(Naph)2(H2O)2]n (III), and calcium furoate [Ca(Fur)2]n (IV) contains no ancillary ligands. The structures of compounds I–IV are determined by X-ray diffraction (XRD) (CIF files CCDC nos. 2342790–2342793, respectively). The structures of compounds I–III are characterized by the 1D polymeric structure, and compound IV is the 3D polymer.
Keywords
Full Text

About the authors
A. S. Samulionis
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
Russian Federation, Moscow
J. K. Voronina
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
Russian Federation, Moscow
S. N. Melnikov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
Russian Federation, Moscow
A. S. Gavronova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
Russian Federation, Moscow
D. A. Utepova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
Russian Federation, Moscow
N. V. Gogoleva
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
Russian Federation, Moscow
A. S. Goloveshkin
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
Russian Federation, Moscow
D. S. Yambulatov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
Russian Federation, Moscow
S. A. Nikolaevskii
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: sanikol@igic.ras.ru
Russian Federation, Moscow
M. A. Kiskin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
Russian Federation, Moscow
I. L. Eremenko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: sanikol@igic.ras.ru
Russian Federation, Moscow
References
- Bennett T., Geue N., Timco G. et al. // Chem. Eur. J. 2024. V. 30. P. e202400432.
- Darii M., Leusen J.V., Kravtsov V.Ch. et al. // Cryst. Growth Des. 2023. V. 23. P. 6944.
- Pavlov D.I., Yu X., Ryadun A.A. et al. // Food Chem. 2024. V. 445. P. 138747. https://doi.org/10.1016/j.foodchem.2024.138747;
- Lysova A.A., Samsonenko D.G., Dorovatovskii P.V. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 17260.
- Bondarenko G.N., Ganina O.G., Lysova A.A. et al. // J. CO2 Util. 2021. V. 53. P. 101718.
- Lysova A.A., Samsonenko D.G., Kovalenko K.A. et al. // Angew. Chem. Int. Ed. 2020. V. 59. P. 20561.
- Podgornii D., Leusen J.V., Kravtsov V.Ch. et al. // CrystEngComm. 2021. V. 23. P. 153.
- Alotaibi R., Fowler J.M., Lockyer S.J. et al. // Angew. Chem. Int. Ed. 2021. V. 133. P. 9575.
- Bazhina E.S., Gogoleva N.V., Zorina-Tikhonova E.N. et al. // J. Struct. Chem. 2019. V. 60. P. 855. https://doi.org/10.1134/S0022476619060015
- Sidorov A.A., Gogoleva N.V., Bazhina E.S. et al. // Pure Appl. Chem. 2020. V. 92. P. 1093.
- Bazhina E.S., Nikiforova M.E., Aleksandrov G.G. et al. // Russ. Chem. Bull. 2011. V. 60. P. 797. https://doi.org/10.1007/s11172-011-0127-6;
- Bushuev V.A., Gogoleva N.V., Nikolaevskii S.A. et al. // Molecules. 2024. V. 29. P. 2125.
- Bondarenko M.A., Abramov P.A., Novikov A.S. et al. // Polyhedron. 2022. V. 214. P. 115644.
- Bondarenko M.A., Novikov A.S., Adonin S.A. // Russ. J. Inorg. Chem. 2021. V. 66. P. 814. https://doi.org/10.1134/S0036023621060061
- Zaguzin A.S., Sukhikh T.S., Kolesov B.A. et al. // Polyhedron. 2022. V. 212. P. 115587.
- Bondarenko M.A., Novikov A.S., Korolkov I.V. et al. // Inorg. Chim. Acta. 2021. V. 524. P. 120436.
- Bondarenko M.A., Novikov A.S., Sukhikh T.S. et al. // J. Mol. Struct. 2021. V. 1244. P. 130942.
- Polyukhov D.M., Kudriavykh N.A., Gromilov S.A. et al. // ACS Energy Lett. 2022. V. 7. P. 4336.
- Yu X., Ryadun A.A., Potapov A.S., Fedin V.P. // J. Hazard. Mater. 2023. V. 452. P. 131289.
- Yu X., Ryadun A.A., Pavlov D.I. et al. // Angew. Chem. Int. Ed. 2023. V. 62. P. 202306680.
- Yu X., Ryadun A.A., Pavlov D.I. et al. // Adv. Mater. 2024. V. 36. P. 2311939.
- Nehrkorn J., Valuev I.A., Kiskin M.A. et al. // J. Mater. Chem. C. 2021. V. 9. P. 9446.
- Jiang G., Osman S., Senthil R.A. et al. // J. Energy Storage. 2022. V. 49. P. 104071.
- Dong K., Liang J., Wang Y. et al. // ACS Catal. 2022. V. 12. № 10. P. 6092.
- Zhang Y., Li J., Zhao W. et al. // Adv. Mater. 2022. V. 34. № 6. P. 2108114.
- Kong Y.-X., Di Y.-Y., Yang W.-W. et al. // J. Chem. Eng. Data. 2009. V. 54. № 8. P. 2256.
- Mukherjee S., Chen S., Bezrukov A.A. et al. // Angew. Chem. Int. Ed. 2020. V. 59. P. 16188.
- Wang W., Lemaire R., Bensakhria A., Luart D. // J. Anal. Appl. Pyrolysis. 2022. V. 163. P. 105479.
- Zeng L., Huang L., Wang Z. et al. // Angew. Chem. Int. Ed. 2021. V. 60. № 44. P. 23569. https://doi.org/10.1002/anie.202108076;
- Yang J., Trickett C.A., Alahmad S.B. et al. // J. Am. Chem. Soc. 2017. V. 139. № 24. P. 8118.
- Liu W., Low N.W.L., Feng B. et al. // Environ. Sci. Technol. 2010. V. 44. № 2. P. 841.
- Karppinen M., Fjellvåg H., Konno T. et al. // Chem. Mater. 2004. V. 16. № 14. P. 2790.
- Tahashi M., Takahashi M., Goto H. // J. Am. Ceram. Soc. 2017. V. 101. № 4. P. 1393.
- Tahashi M., Tanimoto T., Goto H. et al. // J. Am. Ceram. Soc. 2010. V. 93. № 10. P. 2915.
- Cambridge Structural Atabase. CSD version 5.45 (November 2023).
- Banerjee D., Wang H., Gong Q. et al. // Chem. Sci. 2016. V. 7. P. 759.
- Plonka A.M., Chen X., Wang H. et al. // Chem. Mater. 2016. V. 28. № 6. P. 1636.
- Lin Y., Zhang J., Pandey H. et al. // J. Mater. Chem. A. 2021. V. 9. P. 26202.
- Plonka A.M., Banerjee D., Woerner W.R. et al. // Angew. Chem. Int. Ed. 2013. V. 52. № 6. P. 1692.
- Chen X., Plonka A.M., Banerjee D. et al. // J. Am. Chem. Soc. 2015. V. 137. № 22. P. 7007.
- Furman J.D., Burwood R.P., Tang M. et al. // J. Mater. Chem. 2011. V. 21. P. 6595.
- Yin Y.-J., Zhao H., Zhang L. et al. // Chem. Mater. 2021. V. 33. № 18. P. 7272.
- Wei Z.-W., Chen C.-X., Zheng S.-P. et al. // Inorg. Chem. 2016. V. 55. № 15. P. 7311.
- Wu Z.-F., Tan B., Fu Z.-H. et al. // Chem. Sci. 2022. V. 13. P. 1375.
- Wang Y.-X., Wang H.-M, Meng P. et al. // Dalton Trans. 2021. V. 50. P. 1740.
- Bazaga-García M., Colodrero R.M.P., Papadaki M. et al. // J. Am. Chem. Soc. 2014. V. 136. № 15. P. 5731.
- Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. Р. 3.
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. Р. 3.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339.
- Llunell M., Casanova D., Cirena J. et al. SHAPE. Version.2.1. Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools. Barcelona (Spain): Universitat de Barcelona, 2013.
- Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576
- Alexandrov E.V., Shevchenko A.P., Blatov V.A. // Cryst. Growth Des. 2019. V. 19. № 5. P. 2604.
- Troyanov S.I., Il′ina E.G., Dunaeva K.M. // Koord. Khim. 1991. V. 17. № 12. P. 1692.
- Denisova T.O., Amel'chenkova E.V., Pruss I.V. et al. // Russ. J. Inorg. Chem. 2006. V. 51. № 7. P. 1020. https://doi.org/10.1134/S0036023606070084
- Fomina I.G., Chernyshev V.V., Velikodnyi Y.A. et al. // Russ. Chem. Bull. 2013. V. 62. P. 427. https://doi.org/10.1007/s11172-013-0057-6
- Golubnichaya M.A., Sidorov A.A., Fomina I.G. et al. // Russ. Chem. Bull. 1999. V. 48. P. 1751. https://doi.org/10.1007/BF02494824
- Fomina I.G., Aleksandrov G.G., Dobrokhotova Z.V. et al. // Russ. Chem. Bull. 2006. V. 55. P. 1909. https://doi.org/10.1007/s11172-006-0532-4
- Zorina-Tikhonova E.N., Yambulatov D.S., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 75. https://doi.org/10.1134/S1070328420020104
- Shevchenko A.P., Shabalin A.A., Karpukhin I.Yu., Blatov V.A. // Sci. Technol. Adv. Mater. Methods. 2022. V. 2. № 1. P. 250.
- Kim H., Samsonenko D.G., Yoon M. et al. // Chem. Commun. 2008. V. 39. P. 4697.
- Wang Z., Zhang B., Fujiwara H. et al. // Chem. Commun. 2004. V. 4. P. 416.
- Wang Z., Zhang Y., Kurmoo M. et al. // Aust. J. Chem. 2006. V. 59. № 9. P. 617.
- Yang H.-J., Kou H.-Z., Ni Z.-H. et al. // Inorg. Chem. Commun. 2005. V. 8. № 9. P. 846.
Supplementary files
