Synthesis and X-ray Structures of Polymeric Calcium Carboxylates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The reactions of calcium hydroxide with pivalic, 1-naphthoic, and 2-furancarboxylic acids afford the corresponding polymeric calcium carboxylates. Depending on the crystallization conditions, calcium pivalate is isolated as two different coordination polymers: [Ca3(Piv)6(DMF)2]n · 0.635nC6H6 · 0.365nDMF (I) and [Ca(Рiv)(H2O)2.333(DMF)0.666]n · nРiv·0.333H2O (II). The synthesized calcium 1-naphthoate contains coordinated water molecules [Сa(Naph)2(H2O)2]n (III), and calcium furoate [Ca(Fur)2]n (IV) contains no ancillary ligands. The structures of compounds I–IV are determined by X-ray diffraction (XRD) (CIF files CCDC nos. 2342790–2342793, respectively). The structures of compounds I–III are characterized by the 1D polymeric structure, and compound IV is the 3D polymer.

Full Text

Restricted Access

About the authors

A. S. Samulionis

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
Russian Federation, Moscow

J. K. Voronina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
Russian Federation, Moscow

S. N. Melnikov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
Russian Federation, Moscow

A. S. Gavronova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
Russian Federation, Moscow

D. A. Utepova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
Russian Federation, Moscow

N. V. Gogoleva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
Russian Federation, Moscow

A. S. Goloveshkin

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
Russian Federation, Moscow

D. S. Yambulatov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
Russian Federation, Moscow

S. A. Nikolaevskii

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: sanikol@igic.ras.ru
Russian Federation, Moscow

M. A. Kiskin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
Russian Federation, Moscow

I. L. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanikol@igic.ras.ru
Russian Federation, Moscow

References

  1. Bennett T., Geue N., Timco G. et al. // Chem. Eur. J. 2024. V. 30. P. e202400432.
  2. Darii M., Leusen J.V., Kravtsov V.Ch. et al. // Cryst. Growth Des. 2023. V. 23. P. 6944.
  3. Pavlov D.I., Yu X., Ryadun A.A. et al. // Food Chem. 2024. V. 445. P. 138747. https://doi.org/10.1016/j.foodchem.2024.138747;
  4. Lysova A.A., Samsonenko D.G., Dorovatovskii P.V. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 17260.
  5. Bondarenko G.N., Ganina O.G., Lysova A.A. et al. // J. CO2 Util. 2021. V. 53. P. 101718.
  6. Lysova A.A., Samsonenko D.G., Kovalenko K.A. et al. // Angew. Chem. Int. Ed. 2020. V. 59. P. 20561.
  7. Podgornii D., Leusen J.V., Kravtsov V.Ch. et al. // CrystEngComm. 2021. V. 23. P. 153.
  8. Alotaibi R., Fowler J.M., Lockyer S.J. et al. // Angew. Chem. Int. Ed. 2021. V. 133. P. 9575.
  9. Bazhina E.S., Gogoleva N.V., Zorina-Tikhonova E.N. et al. // J. Struct. Chem. 2019. V. 60. P. 855. https://doi.org/10.1134/S0022476619060015
  10. Sidorov A.A., Gogoleva N.V., Bazhina E.S. et al. // Pure Appl. Chem. 2020. V. 92. P. 1093.
  11. Bazhina E.S., Nikiforova M.E., Aleksandrov G.G. et al. // Russ. Chem. Bull. 2011. V. 60. P. 797. https://doi.org/10.1007/s11172-011-0127-6;
  12. Bushuev V.A., Gogoleva N.V., Nikolaevskii S.A. et al. // Molecules. 2024. V. 29. P. 2125.
  13. Bondarenko M.A., Abramov P.A., Novikov A.S. et al. // Polyhedron. 2022. V. 214. P. 115644.
  14. Bondarenko M.A., Novikov A.S., Adonin S.A. // Russ. J. Inorg. Chem. 2021. V. 66. P. 814. https://doi.org/10.1134/S0036023621060061
  15. Zaguzin A.S., Sukhikh T.S., Kolesov B.A. et al. // Polyhedron. 2022. V. 212. P. 115587.
  16. Bondarenko M.A., Novikov A.S., Korolkov I.V. et al. // Inorg. Chim. Acta. 2021. V. 524. P. 120436.
  17. Bondarenko M.A., Novikov A.S., Sukhikh T.S. et al. // J. Mol. Struct. 2021. V. 1244. P. 130942.
  18. Polyukhov D.M., Kudriavykh N.A., Gromilov S.A. et al. // ACS Energy Lett. 2022. V. 7. P. 4336.
  19. Yu X., Ryadun A.A., Potapov A.S., Fedin V.P. // J. Hazard. Mater. 2023. V. 452. P. 131289.
  20. Yu X., Ryadun A.A., Pavlov D.I. et al. // Angew. Chem. Int. Ed. 2023. V. 62. P. 202306680.
  21. Yu X., Ryadun A.A., Pavlov D.I. et al. // Adv. Mater. 2024. V. 36. P. 2311939.
  22. Nehrkorn J., Valuev I.A., Kiskin M.A. et al. // J. Mater. Chem. C. 2021. V. 9. P. 9446.
  23. Jiang G., Osman S., Senthil R.A. et al. // J. Energy Storage. 2022. V. 49. P. 104071.
  24. Dong K., Liang J., Wang Y. et al. // ACS Catal. 2022. V. 12. № 10. P. 6092.
  25. Zhang Y., Li J., Zhao W. et al. // Adv. Mater. 2022. V. 34. № 6. P. 2108114.
  26. Kong Y.-X., Di Y.-Y., Yang W.-W. et al. // J. Chem. Eng. Data. 2009. V. 54. № 8. P. 2256.
  27. Mukherjee S., Chen S., Bezrukov A.A. et al. // Angew. Chem. Int. Ed. 2020. V. 59. P. 16188.
  28. Wang W., Lemaire R., Bensakhria A., Luart D. // J. Anal. Appl. Pyrolysis. 2022. V. 163. P. 105479.
  29. Zeng L., Huang L., Wang Z. et al. // Angew. Chem. Int. Ed. 2021. V. 60. № 44. P. 23569. https://doi.org/10.1002/anie.202108076;
  30. Yang J., Trickett C.A., Alahmad S.B. et al. // J. Am. Chem. Soc. 2017. V. 139. № 24. P. 8118.
  31. Liu W., Low N.W.L., Feng B. et al. // Environ. Sci. Technol. 2010. V. 44. № 2. P. 841.
  32. Karppinen M., Fjellvåg H., Konno T. et al. // Chem. Mater. 2004. V. 16. № 14. P. 2790.
  33. Tahashi M., Takahashi M., Goto H. // J. Am. Ceram. Soc. 2017. V. 101. № 4. P. 1393.
  34. Tahashi M., Tanimoto T., Goto H. et al. // J. Am. Ceram. Soc. 2010. V. 93. № 10. P. 2915.
  35. Cambridge Structural Atabase. CSD version 5.45 (November 2023).
  36. Banerjee D., Wang H., Gong Q. et al. // Chem. Sci. 2016. V. 7. P. 759.
  37. Plonka A.M., Chen X., Wang H. et al. // Chem. Mater. 2016. V. 28. № 6. P. 1636.
  38. Lin Y., Zhang J., Pandey H. et al. // J. Mater. Chem. A. 2021. V. 9. P. 26202.
  39. Plonka A.M., Banerjee D., Woerner W.R. et al. // Angew. Chem. Int. Ed. 2013. V. 52. № 6. P. 1692.
  40. Chen X., Plonka A.M., Banerjee D. et al. // J. Am. Chem. Soc. 2015. V. 137. № 22. P. 7007.
  41. Furman J.D., Burwood R.P., Tang M. et al. // J. Mater. Chem. 2011. V. 21. P. 6595.
  42. Yin Y.-J., Zhao H., Zhang L. et al. // Chem. Mater. 2021. V. 33. № 18. P. 7272.
  43. Wei Z.-W., Chen C.-X., Zheng S.-P. et al. // Inorg. Chem. 2016. V. 55. № 15. P. 7311.
  44. Wu Z.-F., Tan B., Fu Z.-H. et al. // Chem. Sci. 2022. V. 13. P. 1375.
  45. Wang Y.-X., Wang H.-M, Meng P. et al. // Dalton Trans. 2021. V. 50. P. 1740.
  46. Bazaga-García M., Colodrero R.M.P., Papadaki M. et al. // J. Am. Chem. Soc. 2014. V. 136. № 15. P. 5731.
  47. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
  48. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. Р. 3.
  49. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. Р. 3.
  50. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339.
  51. Llunell M., Casanova D., Cirena J. et al. SHAPE. Version.2.1. Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools. Barcelona (Spain): Universitat de Barcelona, 2013.
  52. Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576
  53. Alexandrov E.V., Shevchenko A.P., Blatov V.A. // Cryst. Growth Des. 2019. V. 19. № 5. P. 2604.
  54. Troyanov S.I., Il′ina E.G., Dunaeva K.M. // Koord. Khim. 1991. V. 17. № 12. P. 1692.
  55. Denisova T.O., Amel'chenkova E.V., Pruss I.V. et al. // Russ. J. Inorg. Chem. 2006. V. 51. № 7. P. 1020. https://doi.org/10.1134/S0036023606070084
  56. Fomina I.G., Chernyshev V.V., Velikodnyi Y.A. et al. // Russ. Chem. Bull. 2013. V. 62. P. 427. https://doi.org/10.1007/s11172-013-0057-6
  57. Golubnichaya M.A., Sidorov A.A., Fomina I.G. et al. // Russ. Chem. Bull. 1999. V. 48. P. 1751. https://doi.org/10.1007/BF02494824
  58. Fomina I.G., Aleksandrov G.G., Dobrokhotova Z.V. et al. // Russ. Chem. Bull. 2006. V. 55. P. 1909. https://doi.org/10.1007/s11172-006-0532-4
  59. Zorina-Tikhonova E.N., Yambulatov D.S., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 75. https://doi.org/10.1134/S1070328420020104
  60. Shevchenko A.P., Shabalin A.A., Karpukhin I.Yu., Blatov V.A. // Sci. Technol. Adv. Mater. Methods. 2022. V. 2. № 1. P. 250.
  61. Kim H., Samsonenko D.G., Yoon M. et al. // Chem. Commun. 2008. V. 39. P. 4697.
  62. Wang Z., Zhang B., Fujiwara H. et al. // Chem. Commun. 2004. V. 4. P. 416.
  63. Wang Z., Zhang Y., Kurmoo M. et al. // Aust. J. Chem. 2006. V. 59. № 9. P. 617.
  64. Yang H.-J., Kou H.-Z., Ni Z.-H. et al. // Inorg. Chem. Commun. 2005. V. 8. № 9. P. 846.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of the polymer chain of compound I (thermal ellipsoids are shown with a 50% probability; hydrogen atoms and tert-butyl groups of substituents are not shown) (a). Crystal packing of compound I (b).

Download (1MB)
3. Fig. 2. Structure of the polymer chain of compound II (thermal ellipsoids are shown with a 50% probability; hydrogen atoms are not shown) (a). Crystal packing of compound II (b). Minor components of disordered tert-butyl groups and coordinated DMFA molecule and water molecules with partial position occupancy are not shown.

Download (1MB)
4. Fig. 3. Structure of the polymer chain of compound III (thermal ellipsoids are shown with a 50% probability; hydrogen atoms are not shown) (a). Crystal packing of compound III (b).

Download (761KB)
5. Fig. 4. Structure of the fragment of polymer IV (thermal ellipsoids are shown with 50% probability; hydrogen atoms are not shown) (a). Crystal packing of compound IV (b).

Download (1MB)
6. Supplementary
Download (283KB)

Copyright (c) 2024 Российская академия наук