Manganese(II) complexes based on sterically hindered {N,O,O} tridentate Schiff bases: synthesis, structures, and properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Manganese(II) complexes (DMSO){(DMSO)2bis[5,7-di-tert-butyl-2-(2-hydroxyphenolato)-1,3-benzoxazol-4-ol]}manganese(II) (Ia) and (DMSO)2{bis[5,7-di-tert-butyl-2-(2-hydroxyphenolato)-5-nitro-1,3-benzoxazol-4-ol]}manganese(II) (Ib) are synthesized from the tridentate sterically hindered Schiff bases: condensation products of 4,6-di-tert-butyl-2-aminophenol with salicylaldehyde derivatives N-(3,5-di-tert-butyl-2-oxyphenyl)salicylaldimine and N-(3,5-di-tert-butyl-2-oxyphenyl-5-nitro)salicylaldimine. The structures and compositions of the synthesized metal chelates are characterized by C, H, and N elemental analysis, IR spectroscopy, and magnetochemical measurement data. The EPR data in DMF and toluene are presented for complex Ia. The molecular structures of complexes Ia and Ib are proved by X-ray diffraction (XRD) results (CIF files CCDC nos. 2325776 (Ia) and 2325777 (Ib), respectively). In both complexes, the manganese ion exists in the octahedral {N2O4} ligand environment in which the coordination occurs due to two nitrogen atoms of the benzoxazole cycle and two oxygen atoms of the o-hydroxyphenol group and the apical positions are occupied by the oxygen atoms of two DMSO molecules.

Full Text

Restricted Access

About the authors

D. A. Garnovskii

Southern Scientific Center, Russian Academy of Sciences

Author for correspondence.
Email: ayueliseeva@mail.ru
Russian Federation, Rostov-on-Don

V. G. Vlasenko

Southern Federal University

Email: ayueliseeva@mail.ru

Research Institute of Physics

Russian Federation, Rostov-on-Don

K. A. Lyssenko

Moscow State University

Email: ayueliseeva@mail.ru
Russian Federation, Moscow

P. A. Knyazev

Southern Federal University

Email: ayueliseeva@mail.ru

Research Institute of Physical and Organic Chemistry

Russian Federation, Rostov-on-Don

A. S. Burlov

Southern Federal University

Email: ayueliseeva@mail.ru

Research Institute of Physical and Organic Chemistry

Russian Federation, Rostov-on-Don

Yu. V. Koshchienko

Southern Federal University

Email: ayueliseeva@mail.ru

Research Institute of Physical and Organic Chemistry

Russian Federation, Rostov-on-Don

A. I. Uraev

Southern Federal University

Email: ayueliseeva@mail.ru

Research Institute of Physical and Organic Chemistry

Russian Federation, Rostov-on-Don

S. I. Levchenkov

Southern Scientific Center, Russian Academy of Sciences

Email: ayueliseeva@mail.ru
Russian Federation, Rostov-on-Don

E. P. Ivakhnenko

Southern Federal University

Email: ayueliseeva@mail.ru

Research Institute of Physical and Organic Chemistry

Russian Federation, Rostov-on-Don

References

  1. Hoskins B.F., Robson R., Williams G.A. et al. // Inorg. Chem. 1991. V. 50. № 22. P. 4160. https://doi.org/10.1021/ic00022a015
  2. Shmakova T.O., Garnovskii D.A., Lyssenko K.A. et al. // Russ. J. Coord. Chem. 2009. V. 35. N 9. P. 657. https://doi.org/10.1134/S107032840909005X (Шмакова Т.О., Гарновский Д.А., Лысенко К.А, и др. // Коорд. химия 2009. Т. 35. № 9. С. 1).
  3. Shmakova T.O., Garnovskii D.A., Lyssenko K.A. et al. // Russ. Chem Bull. 2009. V. 58. № 7. P. 1383. https://doi.org/10.1007/s11172-009-0184-2 (Шмакова Т.О., Гарновский Д.А., Лысенко К.А. и др. // Изв. РАН. Сер. хим. 2009. № 7. С. 1344).
  4. Borisova A.O., Garnovskii D.A., Korshunova E.V. et al. // Russ. Chem Bull. 2012. V. 61. № 11. P. 2070. https://doi.org/10.1007/s11172-012-0289-x (Борисова О.А., Гарновский Д.А., Коршунова Е.В. и др. // Изв. АН. Сер. хим. 2012. № 11. P. 2053).
  5. Garza-Ortíz A., Martínez P.A., Duarte-Hernández A.M. et al. // J. Mol. Struct. 2013. V. 1032. P. 265. https://doi.org/10.016/j.molstruyct.2012.09.078
  6. Mukherjee S., Weyhermüller T., Böthe E. et al. // Eur. J. Inorg. Chem. 2003. № 5. P. 863. https://doi.org/10.1002/ejic.200200594
  7. Mukherjee S., Weyhermüller T., Bothe E. // Eur. J. Inorg. Chem. 2003. № 10. P. 1956. https://doi.org/
  8. VenkatRamani S., Chivinga I., Abboud K., Veige A.S. // Dalton Trans. 2015. V. 44. P. 18475. https://doi.org/10.1039/c5dt02911b
  9. Treqi X., Guang-Pen W., Jie L., Xiao-Bing L. // Inorg. Chem. 2011. V. 50. № 21. P. 10884. https://doi.org/10.1021/ic.2014286
  10. Li A., Haiyan M., Juling H. // organometallics. 2013. V. 32. P. 7460. https://doi.org/10.1021/om4009636
  11. Schmidt A.-C., Hermsen M., Rominger F. et al. // Inorg. Chem. V. 56. № 3. P. 1319. https://doi.org/10.1021/acs.inorgchem. 6b02322
  12. Hongshan K., Yongheng Y., Wen W. et al. // Dalton Trans. 2020. V. 49. P. 10594. https://doi.org/10.1039/DODT02139
  13. Hongshan K., Wen W., Yongheng Y., et al. // Inorg. Chem. 2020. V. 59. Т 5. P. 2833. https://doi.org/10.1021/acs.inorgchem.9b03169
  14. Ou H.-W., Lu W.-Y., Vandavasi J.K. et al. // Polymer. 2018. 2018. V. 140. P. 315. https://doi.org/10.1016/j.polymer.201802.016
  15. Kochem A., Gellon G., Jarjais O. et al. // Dalton Trans. 2015. V. 44. P. 12743. https://doi.org/10.1039/c5dt00944h
  16. Abakumov G.A., Egorova E.N., Kucherova T.N. et al. // RSC Adv. 2014. V. 4. P. 14495. https://doi.org/10.1039/c3ra47669c
  17. Fujita O., Sugimoto H., Morimoto Y. et al. // Inorg. Chem. 2018. V. 57. № 5. P. 9738. https://doi.org/10.1021/ acs. inorgchem. 8b00289
  18. Balaghi S.E., Safaei E., Rafiee M. et al. // Polyhedron. 2012. V. 47. P. 94. https://doi.org/10.1016/j.poly.201207.096
  19. Ley K., Müller E. // Chem. Ber. 1956. V. 89. № 6. P. 1402.
  20. Bruker. ApexII. Madison (WI, USA): Bruker AXS Inc., 2008.
  21. Sheldrick G.M. SADABS. Germany (Göttingen): Univ. of Göttingen, 1997.
  22. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112. https://doi.org/
  23. Sheldrick G.M. // Acta Cryst. 2015. V. A71. P.3. doi: 10.1107/S2053273314026370.
  24. Ma Q., Zhu M., Feng S., Lu L. // Acta Crystallogr. E. 2010. V. 66. m523. https://doi.org/10.1107/S1600536810012894
  25. Vetrova E.V., Tupaeva I.O., Sayapin Y.A. et al. // Dyes and Pigments. 2020. V. 180 № 108417. https://doi.org/10.1016/j.dyepig.2020.108417

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. Possible reaction pathways of manganese(II) acetate with salicylaldimines H2L and H2L1.

Download (193KB)
3. Fig. 1. Experimental (black) and calculated (red) EPR spectra of complex Ia in DMF solution at 295 K (g = 2.00, aMn = 94.4 G).

Download (161KB)
4. Scheme 2. Oxidation of the hydroxyl group in complex Ia.

Download (138KB)
5. Fig. 2. Changes in the EPR spectra of complex Ia in a toluene solution in the presence of PbO2 at 295 K over time (g = 2.00, aMn = 94.4 Gs); inset – experimental (black) and calculated (red) EPR spectra of the radical of complex Ia (g = 2.00, aH = 1.96 Gs).

Download (138KB)
6. Fig. 3. Molecular structure of Ia (thermal ellipsoids with 50% probability).

Download (269KB)
7. Fig. 4. Molecular structure of Ib (thermal ellipsoids with 50% probability).

Download (263KB)
8. Fig. 5. View (along the c-axis) of a fragment of a one-dimensional chain formed by intermolecular bonds O–H⋯O and C–H⋯O (blue dotted lines) in the crystal structure of Ia.

Download (216KB)
9. Fig. 6. View (along the b-axis) of a fragment of a one-dimensional chain formed by intermolecular C–H⋯O bonds (blue dotted lines) in the crystal structure of Ia. Intramolecular O–H⋯O bonds are shown by the green dotted line.

Download (256KB)

Copyright (c) 2025 Российская академия наук