Coordination Compounds of Alkali and Rare Earth Metals Based on Centrosymmetric Chlorine-Substituted Bis-Mercaptooxazole. Synthesis, Structure, and Luminescence

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

New coordination polymers were synthesized. A ditopic centrosymmetric organic ligand containing oxazole heterocycles, 4,8-dichlorobenzo[1,2d:4,5d´]bis(oxazole)-2,6(3H,7H)-dithione (H2L), was prepared and structurally characterized. It was shown that deprotonated H2L forms non-luminescent binuclear molecular complexes Li2L(THF)6 (I) and Na2L(DME)4 (II) with alkali metals, while complexes of H2L with lanthanides are ionic compounds [Ln(DMSO)8][L]1.5 (Ln = Nd (III), Yb (IV)) exhibiting moderate metalcentered emission in the near-infrared (IR) range, despite the absence of coordination of the ligand L to lanthanide ions. The molecular structures of H22DMSO and I–III were established by X-ray diffraction (CCDC no. 2320461 (H22DMSO), 2320462 (I), 2320463 (II), 2320464 (III)).

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Rogozhin

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: atonrog@gmail.com
Ресей, Nizhny Novgorod

V. Il´ichev

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: atonrog@gmail.com
Ресей, Nizhny Novgorod

L. Silant´eva

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: atonrog@gmail.com
Ресей, Nizhny Novgorod

T. Kovylina

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: atonrog@gmail.com
Ресей, Nizhny Novgorod

E. Kozlova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: atonrog@gmail.com
Ресей, Nizhny Novgorod

G. Fukin

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: atonrog@gmail.com
Ресей, Nizhny Novgorod

M. Bochkareva

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: atonrog@gmail.com
Ресей, Nizhny Novgorod

Әдебиет тізімі

  1. Bünzli J.C.G. // Handb. Phys. Chem. Rare Earths. 2016. V. 50. P. 141.
  2. Bünzli J.C.G. // Coord. Chem. Rev. 2015. V. 293–294. P. 19.
  3. Bryleva Y.A., Artem´ev A.V., Glinskaya L.A. et al. // New J. Chem., 2021. V. 45. P. 13869.
  4. Ivanova A.A., Gontcharenko V.E., Lunev A.M. et al. // Inorganics. 2022. V. 10. P. 104.
  5. Alzard R.H., Siddig L.A., Saleh, N. et al. // Sci. Rep. 2022. V. 12. P. 1.
  6. Nosov V.G., Kupryakov A.S., Kolesnikov I.E. et al. // Molecules. 2022. V. 27. P. 5763.
  7. Liu W., Li D., Wang F. et al. // Opt. Mater. 2022. V. 123. P. 111895.
  8. Yu X., Ryadun A.A., Pavlov D.I. et al. // Angew. Chemie. 2023. 135. P. e202306680
  9. Wang S., Sun B., Su Z. et al. // Inorg. Chem. Front. 2022. V. 9. P. 3259
  10. Mínguez Espallargas G., Coronado E. // Chem. Soc. Rev. 2018. V. 47. P. 533
  11. Bazhina E.S., Shmelev M.A., Voronina J.K. et al. // New J. Chem. 2023. V. 47. P. 19251.
  12. Wang X., Wang Y, Wang Y. et al. // Chem. Commun. 2020. V. 56. P. 233.
  13. Yoon M., Srirambalaji R., Kim K. // Chem. Rev. 2012. V. 112. P. 1196.
  14. Getman R.B., Bae Y.S., Wilmer C.E. et al. // Chem. Rev. 2012. V. 112. P. 703.
  15. Li J.R., Sculley J., Zhou H.C. // Chem. Rev. 2012. V. 112. P. 869.
  16. Furukawa H., Cordova K. E., O´Keeffe M. et al. // Science. 2013. V. 341. P. 1230444.
  17. Xia T., Cao W., Guan L. et al. // Dalton. Trans. 2022. V. 51. P. 5426.
  18. Zhou Z., Shang M., Yao Z. et al. // Dye. Pigment. 2022. V. 198. P. 110016.
  19. Demakov P.A., Sapchenko S.A., Samsonenko D.G. et al. // J. Struct. Chem. 2019. V. 60. P. 815.
  20. Songlin Y., Dongxue S., Kaisu L. et al. // Dye. Pigment. 2023. V. 220. P. 111673.
  21. Belousov Y.A., Metlin M.T., Metlina D.A. et al. // Polymers. 2023. V. 15. P. 867.
  22. Ilichev V.A., Rogozhin A.F., Rumyantcev R.V. et al. // Inorg. Chem. 2023. V. 62. P. 12625.
  23. Rogozhin A.F., Ilichev V.A., Fagin A.A. et al. // New J. Chem. 2022. V. 46. P. 13987.
  24. Balashova T.V., Kukinov A.A., Pushkarev A.P. et al. // J. Lumin. 2018. V. 203. P. 286.
  25. Ilichev V.A., Rozhkov A.V., Rumyantcev R.V. et al. // Dalton Trans. 2017. V. 46. P. 3041.
  26. Shavaleev N.M., Scopelliti R., Gumy F. et al. // Inorg. Chem. 2009. V. 48. P. 6178.
  27. Katkova M.A., Balashova T.V., Ilichev V.A. et al. // Inorg. Chem. 2010. V. 49. P. 5094.
  28. Ilichev V.A., Rogozhin A.F., Belyakova A.V. et al. // Organometallics. 2023, V. 42. P. 2792.
  29. Hu J.X., Karamshuk S., Gorbaciova J. et al. // J. Mat. Chem. C. 2018. V. 6. P. 7012.
  30. Inbasekaran M., Strom R. // The New Journal for Organic Synthesis. 1991. V. 449. P. 48674.
  31. Rigaku Oxford Diffraction. CrysAlis Pro software system, version 1.171.41.122a, Rigaku Corporation, Wroclaw, Poland, 2021.
  32. Sheldrick G.M. // Acta Cryst. A. 2015. V. 71. P. 3.
  33. Sheldrick G.M. // (2015). Acta Cryst. C. 2015. V. 71. P. 3.
  34. Watts S., Peloquin A.J., Bandara M. et al. // Acta Cryst. C. 2022. V. 78. P. 702.
  35. Jebbari S., Abdellatif E.K., Ahbada M. et al. // IUCrDATA. 2019. V. 4. Px191119.
  36. Janiak C. // J. Chem. Soc. Dalton Trans. 2000. P. 3885.
  37. Shannon R.D. // Acta Cryst. A. 1976. V. 32. P. 751.
  38. Batsanov S.S. // Inorg. Mater. 2001. V. 37. P. 871.
  39. Armstrong D.R., Banbury F.A., Davidson M.G. et al. // J. Chem. Soc. Chem. Comm. 1992. P. 1492.
  40. KreiderMueller A., Rong Y., Owena, J.S. et al. // Dalton Trans. 2014. V. 43. P. 10852.
  41. Prasanna M.D., Guru Row T.N. // Crystal Engineering. 2000. V. 3. P. 135.
  42. Katkova M.A., Borisov A.V., Fukin G.K. et al. // Inorg. Chim. Acta, 2006, V. 359 P. 4289.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Scheme 1. Synthesis of the ditopic ligand H₂L.

Жүктеу (81KB)
3. Fig. 1. Molecular structure of H2L · 2DMSO. Ellipsoids with 30% probability are shown. Hydrogen atoms of DMSO are not shown for clarity.

Жүктеу (96KB)
4. Fig. 2. Fragment of the crystal packing of the H₂L complex. The crystallographic projection along the b axis is shown. Hydrogen atoms are not shown for clarity.

Жүктеу (123KB)
5. Scheme 2. Synthesis of binuclear alkali metal complexes I and II.

Жүктеу (49KB)
6. Fig. 3. Molecular structure of complex I. Ellipsoids with 30% probability are shown. Hydrogen atoms are not shown for clarity. The symmetry operation ½ – x, ½ + y, ½ – z, used to generate equivalent atoms (A).

Жүктеу (118KB)
7. Scheme 3. Synthesis of ionic compounds of lanthanides III and IV.

Жүктеу (73KB)
8. Fig. 4. Molecular structure of complex II. Ellipsoids with 30% probability are shown. Hydrogen atoms are not shown for clarity. The symmetry operation ½ – x, ½ + y, ½ – z, used to generate equivalent atoms (A).

Жүктеу (124KB)
9. Fig. 5. Cationic (a) and anionic (b) parts of complex III. Ellipsoids with 30% probability are shown. Hydrogen atoms are not shown for clarity.

Жүктеу (153KB)
10. Fig. 6. The arrangement of bismercaptooxazole dianions in complex III. Ellipsoids with 30% probability are shown. Hydrogen atoms are not shown for clarity.

Жүктеу (112KB)
11. Fig. 7. PL spectra of solid samples III and IV in the IR range at room temperature, λexc = 405 nm.

Жүктеу (159KB)

© Российская академия наук, 2024