Coordination Compounds of Alkali and Rare Earth Metals Based on Centrosymmetric Chlorine-Substituted Bis-Mercaptooxazole. Synthesis, Structure, and Luminescence

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New coordination polymers were synthesized. A ditopic centrosymmetric organic ligand containing oxazole heterocycles, 4,8-dichlorobenzo[1,2d:4,5d´]bis(oxazole)-2,6(3H,7H)-dithione (H2L), was prepared and structurally characterized. It was shown that deprotonated H2L forms non-luminescent binuclear molecular complexes Li2L(THF)6 (I) and Na2L(DME)4 (II) with alkali metals, while complexes of H2L with lanthanides are ionic compounds [Ln(DMSO)8][L]1.5 (Ln = Nd (III), Yb (IV)) exhibiting moderate metalcentered emission in the near-infrared (IR) range, despite the absence of coordination of the ligand L to lanthanide ions. The molecular structures of H22DMSO and I–III were established by X-ray diffraction (CCDC no. 2320461 (H22DMSO), 2320462 (I), 2320463 (II), 2320464 (III)).

Full Text

Restricted Access

About the authors

A. F. Rogozhin

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: atonrog@gmail.com
Russian Federation, Nizhny Novgorod

V. A. Il´ichev

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: atonrog@gmail.com
Russian Federation, Nizhny Novgorod

L. I. Silant´eva

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: atonrog@gmail.com
Russian Federation, Nizhny Novgorod

T. A. Kovylina

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: atonrog@gmail.com
Russian Federation, Nizhny Novgorod

E. A. Kozlova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: atonrog@gmail.com
Russian Federation, Nizhny Novgorod

G. K. Fukin

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: atonrog@gmail.com
Russian Federation, Nizhny Novgorod

M. N. Bochkareva

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: atonrog@gmail.com
Russian Federation, Nizhny Novgorod

References

  1. Bünzli J.C.G. // Handb. Phys. Chem. Rare Earths. 2016. V. 50. P. 141.
  2. Bünzli J.C.G. // Coord. Chem. Rev. 2015. V. 293–294. P. 19.
  3. Bryleva Y.A., Artem´ev A.V., Glinskaya L.A. et al. // New J. Chem., 2021. V. 45. P. 13869.
  4. Ivanova A.A., Gontcharenko V.E., Lunev A.M. et al. // Inorganics. 2022. V. 10. P. 104.
  5. Alzard R.H., Siddig L.A., Saleh, N. et al. // Sci. Rep. 2022. V. 12. P. 1.
  6. Nosov V.G., Kupryakov A.S., Kolesnikov I.E. et al. // Molecules. 2022. V. 27. P. 5763.
  7. Liu W., Li D., Wang F. et al. // Opt. Mater. 2022. V. 123. P. 111895.
  8. Yu X., Ryadun A.A., Pavlov D.I. et al. // Angew. Chemie. 2023. 135. P. e202306680
  9. Wang S., Sun B., Su Z. et al. // Inorg. Chem. Front. 2022. V. 9. P. 3259
  10. Mínguez Espallargas G., Coronado E. // Chem. Soc. Rev. 2018. V. 47. P. 533
  11. Bazhina E.S., Shmelev M.A., Voronina J.K. et al. // New J. Chem. 2023. V. 47. P. 19251.
  12. Wang X., Wang Y, Wang Y. et al. // Chem. Commun. 2020. V. 56. P. 233.
  13. Yoon M., Srirambalaji R., Kim K. // Chem. Rev. 2012. V. 112. P. 1196.
  14. Getman R.B., Bae Y.S., Wilmer C.E. et al. // Chem. Rev. 2012. V. 112. P. 703.
  15. Li J.R., Sculley J., Zhou H.C. // Chem. Rev. 2012. V. 112. P. 869.
  16. Furukawa H., Cordova K. E., O´Keeffe M. et al. // Science. 2013. V. 341. P. 1230444.
  17. Xia T., Cao W., Guan L. et al. // Dalton. Trans. 2022. V. 51. P. 5426.
  18. Zhou Z., Shang M., Yao Z. et al. // Dye. Pigment. 2022. V. 198. P. 110016.
  19. Demakov P.A., Sapchenko S.A., Samsonenko D.G. et al. // J. Struct. Chem. 2019. V. 60. P. 815.
  20. Songlin Y., Dongxue S., Kaisu L. et al. // Dye. Pigment. 2023. V. 220. P. 111673.
  21. Belousov Y.A., Metlin M.T., Metlina D.A. et al. // Polymers. 2023. V. 15. P. 867.
  22. Ilichev V.A., Rogozhin A.F., Rumyantcev R.V. et al. // Inorg. Chem. 2023. V. 62. P. 12625.
  23. Rogozhin A.F., Ilichev V.A., Fagin A.A. et al. // New J. Chem. 2022. V. 46. P. 13987.
  24. Balashova T.V., Kukinov A.A., Pushkarev A.P. et al. // J. Lumin. 2018. V. 203. P. 286.
  25. Ilichev V.A., Rozhkov A.V., Rumyantcev R.V. et al. // Dalton Trans. 2017. V. 46. P. 3041.
  26. Shavaleev N.M., Scopelliti R., Gumy F. et al. // Inorg. Chem. 2009. V. 48. P. 6178.
  27. Katkova M.A., Balashova T.V., Ilichev V.A. et al. // Inorg. Chem. 2010. V. 49. P. 5094.
  28. Ilichev V.A., Rogozhin A.F., Belyakova A.V. et al. // Organometallics. 2023, V. 42. P. 2792.
  29. Hu J.X., Karamshuk S., Gorbaciova J. et al. // J. Mat. Chem. C. 2018. V. 6. P. 7012.
  30. Inbasekaran M., Strom R. // The New Journal for Organic Synthesis. 1991. V. 449. P. 48674.
  31. Rigaku Oxford Diffraction. CrysAlis Pro software system, version 1.171.41.122a, Rigaku Corporation, Wroclaw, Poland, 2021.
  32. Sheldrick G.M. // Acta Cryst. A. 2015. V. 71. P. 3.
  33. Sheldrick G.M. // (2015). Acta Cryst. C. 2015. V. 71. P. 3.
  34. Watts S., Peloquin A.J., Bandara M. et al. // Acta Cryst. C. 2022. V. 78. P. 702.
  35. Jebbari S., Abdellatif E.K., Ahbada M. et al. // IUCrDATA. 2019. V. 4. Px191119.
  36. Janiak C. // J. Chem. Soc. Dalton Trans. 2000. P. 3885.
  37. Shannon R.D. // Acta Cryst. A. 1976. V. 32. P. 751.
  38. Batsanov S.S. // Inorg. Mater. 2001. V. 37. P. 871.
  39. Armstrong D.R., Banbury F.A., Davidson M.G. et al. // J. Chem. Soc. Chem. Comm. 1992. P. 1492.
  40. KreiderMueller A., Rong Y., Owena, J.S. et al. // Dalton Trans. 2014. V. 43. P. 10852.
  41. Prasanna M.D., Guru Row T.N. // Crystal Engineering. 2000. V. 3. P. 135.
  42. Katkova M.A., Borisov A.V., Fukin G.K. et al. // Inorg. Chim. Acta, 2006, V. 359 P. 4289.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. Synthesis of the ditopic ligand H₂L.

Download (81KB)
3. Fig. 1. Molecular structure of H2L · 2DMSO. Ellipsoids with 30% probability are shown. Hydrogen atoms of DMSO are not shown for clarity.

Download (96KB)
4. Fig. 2. Fragment of the crystal packing of the H₂L complex. The crystallographic projection along the b axis is shown. Hydrogen atoms are not shown for clarity.

Download (123KB)
5. Scheme 2. Synthesis of binuclear alkali metal complexes I and II.

Download (49KB)
6. Fig. 3. Molecular structure of complex I. Ellipsoids with 30% probability are shown. Hydrogen atoms are not shown for clarity. The symmetry operation ½ – x, ½ + y, ½ – z, used to generate equivalent atoms (A).

Download (118KB)
7. Scheme 3. Synthesis of ionic compounds of lanthanides III and IV.

Download (73KB)
8. Fig. 4. Molecular structure of complex II. Ellipsoids with 30% probability are shown. Hydrogen atoms are not shown for clarity. The symmetry operation ½ – x, ½ + y, ½ – z, used to generate equivalent atoms (A).

Download (124KB)
9. Fig. 5. Cationic (a) and anionic (b) parts of complex III. Ellipsoids with 30% probability are shown. Hydrogen atoms are not shown for clarity.

Download (153KB)
10. Fig. 6. The arrangement of bismercaptooxazole dianions in complex III. Ellipsoids with 30% probability are shown. Hydrogen atoms are not shown for clarity.

Download (112KB)
11. Fig. 7. PL spectra of solid samples III and IV in the IR range at room temperature, λexc = 405 nm.

Download (159KB)

Copyright (c) 2024 Российская академия наук