Lanthanide complexes of related click tripodal 1,2,3-triazole-containing ligands on the Ph3P(O) platform. The N2 and N3 coordination of triazole fragments
- Autores: Matveeva А.G.1, Pasechnik М.P.1, Aysin R.R.1, Bykhovskaya О.V.1, Matveev S.V.1, Baulina T.V.1, Kudryavtsev I.Y.1, Turanov А.N.2, Karandashev V.K.3,4, Brel V.К.1
-
Afiliações:
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
- Institute of Solid State Physics, Russian Academy of Sciences
- Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences
- National University of Science and Technology (MISiS)
- Edição: Volume 50, Nº 3 (2024)
- Páginas: 187-199
- Seção: Articles
- URL: https://journals.eco-vector.com/0132-344X/article/view/667612
- DOI: https://doi.org/10.31857/S0132344X24030043
- EDN: https://elibrary.ru/NSNMOA
- ID: 667612
Citar
Resumo
The coordination and extraction properties of two related tripodal ligands differed by types of addition of the triazole fragment and linker length in the {2-[(4-Ph-1,2,3-triazol-1-yl)CH2CH2O]C6H4}3P(O) (L1) and {2-[(1-Ph-1,2,3-triazol-4-yl)CH2O]C6H4}3P(O) (L2) are compared. The structures of the complexes [Lа(NO3)3L1] (I) and [Lu(NO3)3L1] (II) are studied in the solid phase (elemental analysis, IR and Raman spectroscopy) and in solutions (IR and multinuclear 1H, 13C, and 31P NMR spectroscopy). A normal coordinate analysis at the TPSS-D4/Def2-SVP level is performed for an isolated molecule of the model complex [La{P(O),N3,N2-L3}(O,O-NO3)3] (L3 = {2-[(4-Me-1,2,3-triazol-1-yl)CH2CH2O]C6H4}3-P(O)). According to the set of spectral and quantum chemical data, ligand L1 exhibits the tridentate P(O),N2,N2 coordination in lanthanide complexes I and II. These are neutral complexes in the solid state and in CD3CN solutions, and the dynamic equilibrium of the neutral and ionic complexes is observed in CDCl3. Unlike ligand L1, ligand L2 exhibits the tetradentate P(O),N3,N3,N3 coordination in the [Ln(NO3)3L2] complexes with the same metals (Ln = La3+, Lu3+) in solutions. The efficiency of extraction of microquantities of f elements from the aqueous phase to 1,2-dichloroethane by compounds L1 and L2 is discussed in comparison with the structures of the complexes of both ligands in solutions.
Texto integral

Sobre autores
А. Matveeva
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Autor responsável pela correspondência
Email: matveeva@ineos.ac.ru
Rússia, Moscow
М. Pasechnik
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: matveeva@ineos.ac.ru
Rússia, Moscow
R. Aysin
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: matveeva@ineos.ac.ru
Rússia, Moscow
О. Bykhovskaya
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: matveeva@ineos.ac.ru
Rússia, Moscow
S. Matveev
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: matveeva@ineos.ac.ru
Rússia, Moscow
T. Baulina
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: matveeva@ineos.ac.ru
Rússia, Moscow
I. Kudryavtsev
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: matveeva@ineos.ac.ru
Rússia, Moscow
А. Turanov
Institute of Solid State Physics, Russian Academy of Sciences
Email: matveeva@ineos.ac.ru
Rússia, Chernogolovka
V. Karandashev
Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences; National University of Science and Technology (MISiS)
Email: matveeva@ineos.ac.ru
Rússia, Moscow oblast, Chernogolovka; Moscow
V. Brel
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
Email: matveeva@ineos.ac.ru
Rússia, Moscow
Bibliografia
- Aromí G., Barrios L.A., Roubeau O. et al. // Coord. Chem. Rev. 2011. V. 255. P. 485.
- Schulze B., Schubert U.S. // Chem. Soc. Rev. 2014. V. 43. P. 2522.
- Götzke L., Schaper G., März J. et al. // Coord. Chem. Rev. 2019. V. 386. P. 267.
- Scattergood P., Sinopoli A., Elliott P. // Coord. Chem. Rev. 2017. V. 350. P. 136.
- Huang D., Zhao P., Astruc D. // Coord. Chem. Rev. 2014. V. 272. P. 145.
- Hosseinnejad T., Ebrahimpour-Malmir F., Fattahi B. // RSC Adv. 2018. V. 22. № 8. P. 12232.
- Lauko J., Kouwer P.H.J., Rowan A.E. // J. Heterocycl. Chem. 2017. V. 54. № 3. P. 1677.
- Nößler M., Hunger D., Neuman N.I. et al. // Dalton Trans. 2022. V. 51. P. 10507.
- Urankar D., Pinter B., Pevec A. et al. // Inorg. Chem. 2010. V. 49. P. 4820.
- Guha P.M., Phan H., Kinyon J.S. et al. // Inorg. Chem. 2012. V. 51. P. 3465.
- Kilpin K.J., Gavey E.L., McAdam C.J. et al. // Inorg. Chem. 2011. V. 50 P. 6334.
- Lo W.K.C., Huff G.S., Cubanski J.R. et al. // Inorg. Chem. 2015. V. 54. № 4. P. 1572.
- Saleem F., Rao G.K., Kumar A. et al. // Organometallics. 2013. V. 32. № 13. P. 3595.
- Kudryavtsev I.Y., Bykhovskaya O.V., Matveeva A.G. et al. // Monats. Chem. 2020. V. 151. № 11. P. 1705.
- Matveeva A.G., Bykhovskaya O.V., Pasechnik M.P. et al. // Mendeleev Commun. 2022. V. 32. № 5. P. 588.
- Platt A.W.G. // Coord. Chem. Rev. 2017. V. 340. P. 62.
- Bryleva Yu.A., Artem′ev A.V., Glinskaya L.A. et al. // J. Struct. Chem. V. 62. № 2. P. 265. https://doi.org/10.1134/S0022476621020116
- Bryleva Yu.A., Artem′ev A.V., Glinskaya L.A. et al. // New J. Chem. 2021. V. 45. P. 13869.
- Bryleva Y.A., Komarov V.Yu., Glinskaya L.A. et al. // New J. Chem. 2023. V. 47. P. 10446.
- Matveeva A.G., Baulina T.V., Kudryavtsev I.Yu. et al. // Russ. J. Gen. Chem. 2020. V. 90. № 12. P. 2338. https://doi.org/10.1134/S107036322012018X
- Armarego W.L.F., Chai C.L.L. Purification of Laboratory Chemicals. New York: Elsevier, 2009. P. 743.
- Neese F. // WIREs Comput. Mol. Sci. 2018. V. 8. № 1. P. e1327.
- Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158.
- Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297.
- Perdew J.P., Ruzsinsky A., Csonka G.I. et al. // Phys. Rev. Lett. 2009. V. 103. P. 026403.
- Caldeweyher E., Bannwarth C., Grimme S. // J. Chem. Phys. 2017. V. 147. P. 034112.
- Neese F. // J. Comput. Chem. 2003. V. 24. № 14. P. 1740.
- Neese F., Wennmohs F., Hansen A. et al. // Chem. Phys. 2009. V. 356. № 1—3. P. 98.
- Dutta A.K., Neese F., Izsak R. // J. Chem. Phys. 2016. V. 144. № 3. P. 034102.
- Weigend F. // Phys. Chem. Chem. Phys. 2006. V. 8. № 9. P. 1057.
- Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Hoboken: J. Wiley & Sons Inc, 2009. 432 p.
- Matveeva A.G., Vologzhanina A.V., Pasechnik M.P. et al. // Polyhedron. 2022. V. 215. P. 115680.
- Mohammadsaleh F., Jahromi M.D., Hajipour A.R. et al. // RSC Adv. 2021. V. 11. № 34. P. 20812.
- Matveeva A.G., Peregudov A.S., Matrosov E.I. et al. // Inorg. Chim. Acta. 2009. V. 362. P. 3607.
- Davis M.F., Levason W., Ratnani R. et al. // New J. Chem. 2006. V. 30. P. 782.
- Matveeva A.G., Kudryavtsev I.Yu., Pasechnik M.P. et al. // Polyhedron. 2018. V. 142. P. 71.
- Kiefer C., Wagner A.T., Beele B.B. et al. // Inorg. Chem. 2015. V. 54. P. 7301.
- Matveeva A.G., Vologzhanina A.V., Goryunov E.I. et al. // Dalton Trans. 2016. V. 45. P. 5162.
- Bremer A., Ruff C.M., Girnt D. et al. // Inorg. Chem. 2012. V. 51. P. 5199.
- Matveeva A.G., Artyushin O.I., Pasechnik M.P. et al. // Polyhedron. 2021. V. 198. P. 115085.
- Beele B.B., Rüdiger E., Schwörer F. et al. // Dalton Trans. 2013. V. 42. P. 12139.
Arquivos suplementares
