Lanthanide complexes of related click tripodal 1,2,3-triazole-containing ligands on the Ph3P(O) platform. The N2 and N3 coordination of triazole fragments

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The coordination and extraction properties of two related tripodal ligands differed by types of addition of the triazole fragment and linker length in the {2-[(4-Ph-1,2,3-triazol-1-yl)CH2CH2O]C6H4}3P(O) (L1) and {2-[(1-Ph-1,2,3-triazol-4-yl)CH2O]C6H4}3P(O) (L2) are compared. The structures of the complexes [Lа(NO3)3L1] (I) and [Lu(NO3)3L1] (II) are studied in the solid phase (elemental analysis, IR and Raman spectroscopy) and in solutions (IR and multinuclear 1H, 13C, and 31P NMR spectroscopy). A normal coordinate analysis at the TPSS-D4/Def2-SVP level is performed for an isolated molecule of the model complex [La{P(O),N3,N2-L3}(O,O-NO3)3] (L3 = {2-[(4-Me-1,2,3-triazol-1-yl)CH2CH2O]C6H4}3-P(O)). According to the set of spectral and quantum chemical data, ligand L1 exhibits the tridentate P(O),N2,N2 coordination in lanthanide complexes I and II. These are neutral complexes in the solid state and in CD3CN solutions, and the dynamic equilibrium of the neutral and ionic complexes is observed in CDCl3. Unlike ligand L1, ligand L2 exhibits the tetradentate P(O),N3,N3,N3 coordination in the [Ln(NO3)3L2] complexes with the same metals (Ln = La3+, Lu3+) in solutions. The efficiency of extraction of microquantities of elements from the aqueous phase to 1,2-dichloroethane by compounds L1 and L2 is discussed in comparison with the structures of the complexes of both ligands in solutions.

Full Text

Restricted Access

About the authors

А. G. Matveeva

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Author for correspondence.
Email: matveeva@ineos.ac.ru
Russian Federation, Moscow

М. P. Pasechnik

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: matveeva@ineos.ac.ru
Russian Federation, Moscow

R. R. Aysin

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: matveeva@ineos.ac.ru
Russian Federation, Moscow

О. V. Bykhovskaya

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: matveeva@ineos.ac.ru
Russian Federation, Moscow

S. V. Matveev

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: matveeva@ineos.ac.ru
Russian Federation, Moscow

T. V. Baulina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: matveeva@ineos.ac.ru
Russian Federation, Moscow

I. Y. Kudryavtsev

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: matveeva@ineos.ac.ru
Russian Federation, Moscow

А. N. Turanov

Institute of Solid State Physics, Russian Academy of Sciences

Email: matveeva@ineos.ac.ru
Russian Federation, Chernogolovka

V. K. Karandashev

Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences; National University of Science and Technology (MISiS)

Email: matveeva@ineos.ac.ru
Russian Federation, Moscow oblast, Chernogolovka; Moscow

V. К. Brel

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: matveeva@ineos.ac.ru
Russian Federation, Moscow

References

  1. Aromí G., Barrios L.A., Roubeau O. et al. // Coord. Chem. Rev. 2011. V. 255. P. 485.
  2. Schulze B., Schubert U.S. // Chem. Soc. Rev. 2014. V. 43. P. 2522.
  3. Götzke L., Schaper G., März J. et al. // Coord. Chem. Rev. 2019. V. 386. P. 267.
  4. Scattergood P., Sinopoli A., Elliott P. // Coord. Chem. Rev. 2017. V. 350. P. 136.
  5. Huang D., Zhao P., Astruc D. // Coord. Chem. Rev. 2014. V. 272. P. 145.
  6. Hosseinnejad T., Ebrahimpour-Malmir F., Fattahi B. // RSC Adv. 2018. V. 22. № 8. P. 12232.
  7. Lauko J., Kouwer P.H.J., Rowan A.E. // J. Heterocycl. Chem. 2017. V. 54. № 3. P. 1677.
  8. Nößler M., Hunger D., Neuman N.I. et al. // Dalton Trans. 2022. V. 51. P. 10507.
  9. Urankar D., Pinter B., Pevec A. et al. // Inorg. Chem. 2010. V. 49. P. 4820.
  10. Guha P.M., Phan H., Kinyon J.S. et al. // Inorg. Chem. 2012. V. 51. P. 3465.
  11. Kilpin K.J., Gavey E.L., McAdam C.J. et al. // Inorg. Chem. 2011. V. 50 P. 6334.
  12. Lo W.K.C., Huff G.S., Cubanski J.R. et al. // Inorg. Chem. 2015. V. 54. № 4. P. 1572.
  13. Saleem F., Rao G.K., Kumar A. et al. // Organometallics. 2013. V. 32. № 13. P. 3595.
  14. Kudryavtsev I.Y., Bykhovskaya O.V., Matveeva A.G. et al. // Monats. Chem. 2020. V. 151. № 11. P. 1705.
  15. Matveeva A.G., Bykhovskaya O.V., Pasechnik M.P. et al. // Mendeleev Commun. 2022. V. 32. № 5. P. 588.
  16. Platt A.W.G. // Coord. Chem. Rev. 2017. V. 340. P. 62.
  17. Bryleva Yu.A., Artem′ev A.V., Glinskaya L.A. et al. // J. Struct. Chem. V. 62. № 2. P. 265. https://doi.org/10.1134/S0022476621020116
  18. Bryleva Yu.A., Artem′ev A.V., Glinskaya L.A. et al. // New J. Chem. 2021. V. 45. P. 13869.
  19. Bryleva Y.A., Komarov V.Yu., Glinskaya L.A. et al. // New J. Chem. 2023. V. 47. P. 10446.
  20. Matveeva A.G., Baulina T.V., Kudryavtsev I.Yu. et al. // Russ. J. Gen. Chem. 2020. V. 90. № 12. P. 2338. https://doi.org/10.1134/S107036322012018X
  21. Armarego W.L.F., Chai C.L.L. Purification of Laboratory Chemicals. New York: Elsevier, 2009. P. 743.
  22. Neese F. // WIREs Comput. Mol. Sci. 2018. V. 8. № 1. P. e1327.
  23. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158.
  24. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. V. 7. № 18. P. 3297.
  25. Perdew J.P., Ruzsinsky A., Csonka G.I. et al. // Phys. Rev. Lett. 2009. V. 103. P. 026403.
  26. Caldeweyher E., Bannwarth C., Grimme S. // J. Chem. Phys. 2017. V. 147. P. 034112.
  27. Neese F. // J. Comput. Chem. 2003. V. 24. № 14. P. 1740.
  28. Neese F., Wennmohs F., Hansen A. et al. // Chem. Phys. 2009. V. 356. № 1—3. P. 98.
  29. Dutta A.K., Neese F., Izsak R. // J. Chem. Phys. 2016. V. 144. № 3. P. 034102.
  30. Weigend F. // Phys. Chem. Chem. Phys. 2006. V. 8. № 9. P. 1057.
  31. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Hoboken: J. Wiley & Sons Inc, 2009. 432 p.
  32. Matveeva A.G., Vologzhanina A.V., Pasechnik M.P. et al. // Polyhedron. 2022. V. 215. P. 115680.
  33. Mohammadsaleh F., Jahromi M.D., Hajipour A.R. et al. // RSC Adv. 2021. V. 11. № 34. P. 20812.
  34. Matveeva A.G., Peregudov A.S., Matrosov E.I. et al. // Inorg. Chim. Acta. 2009. V. 362. P. 3607.
  35. Davis M.F., Levason W., Ratnani R. et al. // New J. Chem. 2006. V. 30. P. 782.
  36. Matveeva A.G., Kudryavtsev I.Yu., Pasechnik M.P. et al. // Polyhedron. 2018. V. 142. P. 71.
  37. Kiefer C., Wagner A.T., Beele B.B. et al. // Inorg. Chem. 2015. V. 54. P. 7301.
  38. Matveeva A.G., Vologzhanina A.V., Goryunov E.I. et al. // Dalton Trans. 2016. V. 45. P. 5162.
  39. Bremer A., Ruff C.M., Girnt D. et al. // Inorg. Chem. 2012. V. 51. P. 5199.
  40. Matveeva A.G., Artyushin O.I., Pasechnik M.P. et al. // Polyhedron. 2021. V. 198. P. 115085.
  41. Beele B.B., Rüdiger E., Schwörer F. et al. // Dalton Trans. 2013. V. 42. P. 12139.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparison of fragments of Raman spectra of solid compounds L1 (a), I (b), II (c), III (d).

Download (135KB)
3. Scheme 1.

Download (121KB)
4. Scheme 2. Visualization of the N2- and N3-coordination of the triazole fragment in model complex IV.

Download (68KB)
5. Scheme 3. Structure of [Ln{P(O),N2,N2-L1}(O,O-NO3)3] (Ln = La, Lu) complexes in solid form and in solutions. The “*” sign denotes the “free” (non-coordinated) triazole ring, which participates in additional intra- and intermolecular contacts.

Download (51KB)

Copyright (c) 2024 Российская академия наук