Mechanism of the Formation of trans- and cis-Isomers of the bis (chelate) Pd(II) and Pt(II) Complexes Based on (N,O(S, Se))-Bidentate Azomethines. А Quantum-Chemical Study
- Autores: Kharabayev N.N.1, Steglenko D.V.1, Minkin V.I.1
-
Afiliações:
- Research Institute of Physical and Organic Chemistry, Southern Federal University
- Edição: Volume 50, Nº 11 (2024)
- Páginas: 799-806
- Seção: Articles
- URL: https://journals.eco-vector.com/0132-344X/article/view/667651
- DOI: https://doi.org/10.31857/S0132344X24110059
- EDN: https://elibrary.ru/LMQIXM
- ID: 667651
Citar
Resumo
The molecular structures and relative energies of trans- and cis-isomers of bis(chelate) complexes of Pd(II) and Pt(II) salicylal-, thiosalicylal-, and selenosalicylaldiiminates are calculated using the density functional theory. The role of the kinetic factor in the formation of the trans- and cis-isomers of the PdL2 and PtL2 complexes is studied in the framework of the model of the step-by-step formation of the bis(ligand) metal complexes ML2 (M++ + (L)– → (ML)+, (ML)+ + (L)–→ ML2). The competition of the trans- and cis-isomers of the PdL2 and PtL2 bis(chelate) azomethine complexes with the coordination nodes MN2O2, MN2S2, and MN2Se2 is shown to be determined by both the energy preference of one of possible configurations and activation barriers of the isomerization of the products formed in the first step of the interaction of the initial reagents.
Texto integral

Sobre autores
N. Kharabayev
Research Institute of Physical and Organic Chemistry, Southern Federal University
Autor responsável pela correspondência
Email: nkharabaev@mail.ru
Rússia, Rostov-on-Don
D. Steglenko
Research Institute of Physical and Organic Chemistry, Southern Federal University
Email: nkharabaev@mail.ru
Rússia, Rostov-on-Don
V. Minkin
Research Institute of Physical and Organic Chemistry, Southern Federal University
Email: nkharabaev@mail.ru
Rússia, Rostov-on-Don
Bibliografia
- Garnovskii A.D., Nivorozhkin A.L., Minkin V.I. // Coord. Chem. Rev. 1993. V. 126. № 1. P. 1.
- Bourget-Merle. L., Lappert M.F., Severn J.R. // Chem. Rev. 2002. V. 102. № 6. P. 3031.
- Garnovskii A.D., Vasilchenko I.S., Garnovskii D.A., Kharisov B.I. // J. Coord. Chem. 2009. V. 62. № 2. P. 151.
- Kharabaev N.N., Starikov A.G., Minkin V.I. // Dokl. Chem. 2014. V. 458. P. 181.
- Kharabayev N.N., Starikov A.G., Minkin V.I. // J. Struct. Chem. 2016. V. 57. № 3. P. 431.
- Kharabayev N.N., Minkin V.I. // Russ. J. Coord. Chem. 2022. V. 48. № 12. P. 765. https://doi.org/10.1134/S1070328422700117.
- Faghih Z., Neshat A., Wojtczak A. et al. // Inorg. Chim. Acta. 2018. V. 471. P. 404.
- Tshabalala T., Ojwach S. // J. Organomet. Chem. 2018. V. 873. P. 35.
- Firinci R., Firinci E., Basbulbul G. et al. // Transition Met. Chem. 2019. V. 44. P. 391.
- Sarto L.E., Badaro W.P.D., de Gois E.P. et al. // J. Mol. Struct. 2020. V. 1204. P. 127549.
- Komiya N., Okada M., Fukumoto K. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 6493.
- Patterson A.E., Miller J.J., Miles B.A. et al. // Inorg. Chim. Acta. 2014. V. 415. P. 88
- Hashimoto T., Fukumoto K., Le N.H.-T. et al. // Dalton Trans. 2016. V. 45. P. 19257.
- Iwata S., Takahashi H., Ihara A. et al.// Transition Met. Chem. 2018. V. 43. P. 115.
- Martin E.M., Bereman R.D., Reibenspies J. // Inorg. Chim. Acta.1992. V.191. P. 171.
- Antsyshkina A.S., Porai-Koshits M.A., Vasil’chenko I.S. et al. // Proc. Nat. Acad. Sci. USSR. 1993. V. 330. P. 54.
- Orysyk S.I., Bon V.V., Pekhnyo V.I. // Acta Crystallogr. E. 2009. V. 65. m 1059.
- Orysyk S.I., Bon V.V., Pekhnyo V.I., et al. // Polyhedron. 2012. V. 38. P. 15.
- Al-Jibori S.A., Dayaaf N.A., Mohammed M.Y., et al. // J. Chem. Cryst. 2013. V.43. P. 365.
- Dutta P.K., Panda S., Zade S.S. // Inorg. Cnim. Acta. 2014. V. 411. P. 83.
- Kharabaev N.N., Kogan V.A., Osipov O.A. // Zh. Strukt. Khim. 1979. V. 20. № 1. P. 133.
- Kharabayev N.N. // Russ. J. Coord. Chem. 2017. Vol. 43. № 12. P. 807. https://doi.org/10.1134/S107032841712003X
- Kharabayev N.N. // Russ. J. Coord. Chem. 2019. V. 45. № 8. P. 573. https://doi.org/10.1134/S1070328419080050
- Parr R., Yang W. Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989. 333 p.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09. Revision D.01. Wallingford CT, Gaussian, Inc., 2013.
- Sousa S.F., Fernandes P.A., Ramos M.J. //J. Phys. Chem. A. 2007. V. 111. № 42. Р. 10439.
- Burke K., Wagner L.O. // Int. J. Quantum Chem. 2013. V. 113. № 2. P. 96.
- Tsipis A.C. // Coord. Chem. Rev. 2014. V. 272. P. 1.
- Becke A.D. // Phys. Rev. A. 1988. V. 38. P. 3098.
- Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785.
- Perdew J. P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865.
- Tao J., Perdew J.P., Staroverov V.N., Scuseria G.E. // Phys. Rev. Lett. 2003. V. 91. P. 146401.
- Zhurko G.A., Zhurko D.A. Chemcraft. Version 1.6. http://www.chemcraftprog.com
- Kharabaev N.N. // Koord. Khim. 1991. V. 17. № 5. P. 579.
Arquivos suplementares
