Mechanism of the Formation of trans- and cis-Isomers of the bis (chelate) Pd(II) and Pt(II) Complexes Based on (N,O(S, Se))-Bidentate Azomethines. А Quantum-Chemical Study

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The molecular structures and relative energies of trans- and cis-isomers of bis(chelate) complexes of Pd(II) and Pt(II) salicylal-, thiosalicylal-, and selenosalicylaldiiminates are calculated using the density functional theory. The role of the kinetic factor in the formation of the trans- and cis-isomers of the PdL2 and PtL2 complexes is studied in the framework of the model of the step-by-step formation of the bis(ligand) metal complexes ML2 (M++ + (L) → (ML)+, (ML)+ + (L)→ ML2). The competition of the trans- and cis-isomers of the PdL2 and PtL2 bis(chelate) azomethine complexes with the coordination nodes MN2O2, MN2S2, and MN2Se2 is shown to be determined by both the energy preference of one of possible configurations and activation barriers of the isomerization of the products formed in the first step of the interaction of the initial reagents.

Texto integral

Acesso é fechado

Sobre autores

N. Kharabayev

Research Institute of Physical and Organic Chemistry, Southern Federal University

Autor responsável pela correspondência
Email: nkharabaev@mail.ru
Rússia, Rostov-on-Don

D. Steglenko

Research Institute of Physical and Organic Chemistry, Southern Federal University

Email: nkharabaev@mail.ru
Rússia, Rostov-on-Don

V. Minkin

Research Institute of Physical and Organic Chemistry, Southern Federal University

Email: nkharabaev@mail.ru
Rússia, Rostov-on-Don

Bibliografia

  1. Garnovskii A.D., Nivorozhkin A.L., Minkin V.I. // Coord. Chem. Rev. 1993. V. 126. № 1. P. 1.
  2. Bourget-Merle. L., Lappert M.F., Severn J.R. // Chem. Rev. 2002. V. 102. № 6. P. 3031.
  3. Garnovskii A.D., Vasilchenko I.S., Garnovskii D.A., Kharisov B.I. // J. Coord. Chem. 2009. V. 62. № 2. P. 151.
  4. Kharabaev N.N., Starikov A.G., Minkin V.I. // Dokl. Chem. 2014. V. 458. P. 181.
  5. Kharabayev N.N., Starikov A.G., Minkin V.I. // J. Struct. Chem. 2016. V. 57. № 3. P. 431.
  6. Kharabayev N.N., Minkin V.I. // Russ. J. Coord. Chem. 2022. V. 48. № 12. P. 765. https://doi.org/10.1134/S1070328422700117.
  7. Faghih Z., Neshat A., Wojtczak A. et al. // Inorg. Chim. Acta. 2018. V. 471. P. 404.
  8. Tshabalala T., Ojwach S. // J. Organomet. Chem. 2018. V. 873. P. 35.
  9. Firinci R., Firinci E., Basbulbul G. et al. // Transition Met. Chem. 2019. V. 44. P. 391.
  10. Sarto L.E., Badaro W.P.D., de Gois E.P. et al. // J. Mol. Struct. 2020. V. 1204. P. 127549.
  11. Komiya N., Okada M., Fukumoto K. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 6493.
  12. Patterson A.E., Miller J.J., Miles B.A. et al. // Inorg. Chim. Acta. 2014. V. 415. P. 88
  13. Hashimoto T., Fukumoto K., Le N.H.-T. et al. // Dalton Trans. 2016. V. 45. P. 19257.
  14. Iwata S., Takahashi H., Ihara A. et al.// Transition Met. Chem. 2018. V. 43. P. 115.
  15. Martin E.M., Bereman R.D., Reibenspies J. // Inorg. Chim. Acta.1992. V.191. P. 171.
  16. Antsyshkina A.S., Porai-Koshits M.A., Vasil’chenko I.S. et al. // Proc. Nat. Acad. Sci. USSR. 1993. V. 330. P. 54.
  17. Orysyk S.I., Bon V.V., Pekhnyo V.I. // Acta Crystallogr. E. 2009. V. 65. m 1059.
  18. Orysyk S.I., Bon V.V., Pekhnyo V.I., et al. // Polyhedron. 2012. V. 38. P. 15.
  19. Al-Jibori S.A., Dayaaf N.A., Mohammed M.Y., et al. // J. Chem. Cryst. 2013. V.43. P. 365.
  20. Dutta P.K., Panda S., Zade S.S. // Inorg. Cnim. Acta. 2014. V. 411. P. 83.
  21. Kharabaev N.N., Kogan V.A., Osipov O.A. // Zh. Strukt. Khim. 1979. V. 20. № 1. P. 133.
  22. Kharabayev N.N. // Russ. J. Coord. Chem. 2017. Vol. 43. № 12. P. 807. https://doi.org/10.1134/S107032841712003X
  23. Kharabayev N.N. // Russ. J. Coord. Chem. 2019. V. 45. № 8. P. 573. https://doi.org/10.1134/S1070328419080050
  24. Parr R., Yang W. Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989. 333 p.
  25. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09. Revision D.01. Wallingford CT, Gaussian, Inc., 2013.
  26. Sousa S.F., Fernandes P.A., Ramos M.J. //J. Phys. Chem. A. 2007. V. 111. № 42. Р. 10439.
  27. Burke K., Wagner L.O. // Int. J. Quantum Chem. 2013. V. 113. № 2. P. 96.
  28. Tsipis A.C. // Coord. Chem. Rev. 2014. V. 272. P. 1.
  29. Becke A.D. // Phys. Rev. A. 1988. V. 38. P. 3098.
  30. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785.
  31. Perdew J. P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865.
  32. Tao J., Perdew J.P., Staroverov V.N., Scuseria G.E. // Phys. Rev. Lett. 2003. V. 91. P. 146401.
  33. Zhurko G.A., Zhurko D.A. Chemcraft. Version 1.6. http://www.chemcraftprog.com
  34. Kharabaev N.N. // Koord. Khim. 1991. V. 17. № 5. P. 579.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1.

Baixar (125KB)
3. Scheme 2.

Baixar (137KB)
4. Scheme 3.

Baixar (130KB)
5. Scheme 4.

Baixar (127KB)

Declaração de direitos autorais © Российская академия наук, 2024