Specifics of the Development of an On-Board Visualization System for Civil Aircrafts
- 作者: Barladian B.K.1, Deryabin N.B.1, Voloboy A.G.1, Galaktionov V.A.1, Shapiro L.Z.1, Shapiro L.Z.1, Solodelov Y.A.2
-
隶属关系:
- Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
- State Scientific Research Institute of Aviation Systems
- 期: 编号 3 (2024)
- 页面: 3-13
- 栏目: COMPUTER GRAPHICS AND VISUALIZATION
- URL: https://journals.eco-vector.com/0132-3474/article/view/675690
- DOI: https://doi.org/10.31857/S0132347424030018
- EDN: https://elibrary.ru/QBCOYU
- ID: 675690
如何引用文章
详细
The instrument panels of modern aircraft are created using the “glass cockpit” concept. This new interface philosophy improves the perception of important flight information by displaying it on a single multi-function display. The paper considers the problems that arise when developing a certified pilot display visualization system designed for operation on civil aircraft under the Russian real-time operating system JetOS. The paper presents several algorithmic solutions that allow achieving acceptable visualization speed. In particular, a solution to the problem of rigid scheduling of operating system partitions is described in detail. This solution allows to overcome the degradation of rendering speed. Directions for further work have been outlined.
全文:

作者简介
B. Barladian
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: bbarladian@gmail.com
俄罗斯联邦, Moscow
N. Deryabin
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
Email: dek@keldysh.ru
俄罗斯联邦, Moscow
A. Voloboy
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
Email: voloboy@gin.keldysh.ru
俄罗斯联邦, Moscow
V. Galaktionov
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
Email: vlgal@gin.keldysh.ru
俄罗斯联邦, Moscow
L. Shapiro
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
Email: pls@gin.keldysh.ru
俄罗斯联邦, Moscow
L. Shapiro
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
Email: piv@gin.keldysh.ru
俄罗斯联邦, Moscow
Yu. Solodelov
State Scientific Research Institute of Aviation Systems
Email: yasolodelov@2100.gosniias.ru
俄罗斯联邦, Moscow
参考
- Fedosov E.A., Kos’yanchuk V.V., Sel’vesyuk N.I. Integrated modular avionics // Radioelektron. techn. 2015. № 1. P. 66–71.
- Fedosov E.A., Koverninskiy I.V., Kan A.V., Solodelov Y.A. Application of real-tim oerating systems in integrated modular avionics. OSDAY2015. http://osday.ru/solodelov.html
- Solodelov Yu.A. and Gorelits N.K. Certifiable onboard real-time operation system JetOS for Russian aircrafts design // Proceedings of the Institute for System Programming of the RAS. 2017. V. 29. № 3. P. 171–178. https://doi.org/10.15514/ISPRAS-2017-29(3)-10
- DO-178C Software Considerations in Airborne Systems and Equipment Certification. http://www.rtca.org/store_product.asp?prodid=803
- Avionics application software standard interface (ARINC653). SAE-ITC, 2015. https://aviation-ia.sae-itc.com/standards/arinc653p0-3-653p0-3-avionics-application-software-standard-interface-part-0-overview-arinc-653
- Barladian B.Kh., Voloboy A.G., Galaktionov V.A., Knyaz’ V.V., Koverninskii I.V., Solodelov Yu.A., Frolov V.A., Shapiro L.Z. Efficient Implementation of OpenGL SC for Avionics Embedded Systems // Programming and Computer Software. 2018. V. 44. № 4. P. 207–212. https://doi.org/10.1134/S0361768818040059
- Barladyan B.H., Shapiro L.Z., Mallachiev K.A., Khoroshilov A.V., Solodelov Yu.A., Voloboy A.G., Galaktionov V.A., Koverninsky I.V. Rendering System for the Aircraft Real-Time OS JetOS // Proceedings of the Institute for System Programming of the RAS. 2020. V. 32. № 1. P. 57–70. https://doi.org/10.15514/ISPRAS-2020-32(1)-3
- Baek N. and Lee H. OpenGL ES1.1 Implementation Based on OpenGL // Multimedia Tools and Applications. V. 57. No. 3 (2012). P. 669–685.
- Baek N., Lee H. OpenGL SC Implementation over an OpenGL ES1.1 Graphics Board // 2012 IEEE International Conference on Multimedia & Expo Workshops (ICMEW 2012). P. 671–671. https://doi.org/10.1109/ICMEW.2012.127
- Baek N. and Kim K.J. Design and implementation of OpenGL SC2.0 rendering pipeline // Cluster Computing (2019). 22: S931–S936. https://doi.org/10.1007/s10586-017-1111-1
- The Mesa 3D Graphics Library. https://www.mesa3d.org/
- Barladian B.Kh., Deryabin N.B., Voloboy A.G., Galaktionov V.A., Shapiro L.Z. High speed visualization in the JetOS aviation operating system using hardware acceleration // CEUR Workshop Proceedings. 2020. V. 2744. P. 107:1–107:9. https://doi.org/10.51130/graphicon-2020-2-4-3
- Barladian B.K., Deryabin N.B., Shapiro L.Z., Solodelov Yu.A., Voloboy A.G. and Galaktionov V.A. Multiwindow Rendering on a Cockpit Display Using Hardware Acceleration // Programming and Computer Software. 2021. V. 47. № 6. P. 457–465. https://doi.org/10.1134/S0361768821060025
- ARINC Standards. https://www.aviation-ia.com/products/661p1-8-cockpit-display-system-interfaces-user-systems-part-1-avionics-interfaces-basic
- Ansys SCADE Solutions for ARINC661 Compliant Systems, 2021. https://www.ansys.com/products/embedded-software/solutions-for-arinc-661
- Barladian B.K., Shapiro L.Z., Deryabin N.B., Solodelov Yu.A., Voloboy A.G. and Galaktionov V.A. Efficient Rendering for the Cockpit Display System Designed in Compliance with the ARINC661 Standard // Programming and Computer Software. 2022. V. 48. № 3. P. 147–154. https://doi.org/10.1134/S0361768822030021
- Brian Gough. An Introduction to GCC – for the GNU compilers gcc and g++ – Coverage testing with gcov. https://www.linuxtopia.org/online_books/an_introduction_to_gcc/gccintro_81.html
补充文件
