Dynamics of Zooplankton Consumption by the Three-speed Stickleleback Gasterosteus aculeatus (Linnaeus, 1758) at Different Densities of the Predator

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

An experiment was set up to estimate the rate of zooplankton consumption by the three-spined stickleback Gasterosteus aculeatus (Linnaeus, 1758) at different predator densities. A differential equation describes the dynamics of zooplankton abundance depending on duration of predator feeding. The derived function accurately characterizes the rate of zooplankton consumption by stickleback in the experiment, demonstrating a good agreement between the theoretical prerequisites and the experimental results. The relationship between changing a number of prey during predation, its mortality and consumption rate was revealed. The hypothesis of consumption rate proportional to the number of predators was tested. A comparative analysis of ingestion rate as a function of time and a function of prey density was performed.

Авторлар туралы

F. Lobyrev

Lomonosov Moscow State University (MSU), Biological Faculty

Хат алмасуға жауапты Автор.
Email: lobyrev@mail.ru
Russia, 119991, Moscow

Әдебиет тізімі

  1. Баранов Ф.И. К вопросу о биологических основаниях рыбного хозяйства // Изв. Отдела рыбоводства и научно-промысл. исслед. 1918. Т. 1. Вып. 2. С. 84–128.
  2. Бигон М., Харпер Д., Таунсенд К. Экология. Особи, популяции, сообщества. М.: Мир. 1989.
  3. Бондарчук О.Л., Герасимов Ю.В. Особенности пищевого и поискового поведения молоди стерляди при прудовом и бассейновом подращивании // Изв. КГТУ. 2016. № 42. С. 30–38.
  4. Голубков С.М., Адрин Н.В., Голубков М.С. и др. Пищевые цепи и их динамика в экосистемах мелководных озер с различной соленостью воды // Экология. 2018. Т. 49. С. 391–398.
  5. Ивлев В.С. Экспериментальная экология питания рыб. М.: Пищпромиздат. 1955. 246 с.
  6. Касумян А.О., Михайлова Е.С. Вкусовые предпочтения и пищевое поведение трехиглой колюшки Gaste-rosteus aculeatus популяций бассейнов Атлантического и Тихого океанов // Вопр. ихтиологии. 2014. Т. 54. С. 446–469.
  7. Михайлова Е.С., Касумян А.О. Вкусовые предпочтения и пищевое поведение трехиглой колюшки Gaste-rosteus aculeatus в морских и пресных водах // Вопр. ихтиологии. 2010. Т. 50. № 6. С. 828–840.
  8. Одум Ю. Экология. М.: Мир. 1986.
  9. Anderson T.W. Predator responses, prey refuges, and density-dependent mortality of a marine fish // Ecology. 2001. V. 82. P. 245–257.
  10. Bakhvalova A.E., Ivanova T.S., Ivanov M.V. et al. Long-term changes in the role of threespine stickleback (Gasterosteus aculeatus) in the White Sea: predatory fish consumption reflects fluctuating stickleback abundance during the last century // Evol. Ecol. Res. 2016. V. 17. № 3. P. 317–334.
  11. Barrios O’Neill D., Dick J.T.A., Emmerson M.C. et al. Fortune favours the bold: A higher predator reduces the impact of a native but not an invasive intermediate predator // J. Anim. Ecol. 2014. V. 83. P. 693–701.
  12. Bax N. The significance and prediction of predation in marine fisheries // ICES Mar. Sci. Symp. 1998. V. 55. P. 997–1030.
  13. Bell A.M., Henderson L., Huntingford F.A. Behavioral and respiratory responses to stressors in multiple populations of threespined sticklebacks that differ in predation pressure // J. Comp. Physiol. Part B. 2010. V. 180. P. 211–220.
  14. Britton J.R., Davies G.D., Harrod C. Trophic interactions and consequent impacts of the invasive fish Pseudorasbora parva in a native aquatic foodweb: a field investigation in the UK // Biol. Invasions. 2010. V. 12. P. 1533–1542.
  15. Broom C.J., South J., Weyl O. Prey type and temperature influence functional responses of threatened endemic Cape Floristic Ecoregion fishes // Environ. Biol. Fishes. 2021. V. 104. P. 797–810.
  16. Browse U., Hence R.B., Rall B.C. et al. Foraging theory predicts predator–prey energy fluxes // J. Anim. Ecol. 2008. V. 77. P. 1072–1078.
  17. Charnov E. Optimal foraging, the marginal value theorem // Theor. Pop. Biol. 1976. V. 9. P. 129–136.
  18. Christensen V., Walters C. Ecopath with Ecosim: methods, capabilities and limitations // Ecol. Model. 2004. V. 172. P. 109–139.
  19. Dunn R.P., Hovel K.A. Predator type influences the frequency of functional responses to prey in marine habitats // Biol. Lett. 2020. V. 16. 20190758.
  20. Englund G., Öhlund G., Hein C., Diehl S. Temperature dependence of the functional response // Ecol. Lett. 2011. V. 14. P. 914–921.
  21. Fauchald P., Erikstad K.E., Skarsfjord H. Scale-dependent predator–prey interactions: the hierarchical spatial distribution of seabirds and prey // Ecology. 2011. V. 81. P. 773–783.
  22. Fiksen Ø., Utne A.C.W., Aksnes D.L. et al. Modelling the influence of light, turbulence and ontogeny on ingestion rates in larval cod and herring // Fish. Oceanogr. 1998. V. 7. P. 355–363.
  23. Furey N.B., Armstrong J.B., Beauchamp D.A., Hinch S.G. Migratory coupling between predators and prey // Nat. Ecol. Evol. 2018. V. 2. P. 1846–1853. https://doi.org/10.1038/s41559-018-0711-3
  24. Gaichas S.K., Aydin K.Y., Francis R.C. Using food web model results to inform stock assessment estimates of mortality and production for ecosystem based fisheries management // Can. J. Fish. Aquat. Sci. 2010. V. 67. P. 1490–1506.
  25. Genelt-Yanovskiy A.S., Polyakova N.V., Ivanov M.V. et al. Tracing the food web of changing Arctic Ocean: trophic status of highly abundant fish, Gasterosteus aculeatus (L.), in the White Sea recovered using stomach content and stable isotope analyses // Diversity. V. 14. № 11. P. 955–2022. https://doi.org/10.3390/d14110955
  26. Gross J., Shipley L., Hobbs N. et al. Functional response of herbivores in food-concentrated patches: tests of a mechanistic model // Ecology. 1993. V. 74. P. 778–791.
  27. Guénette S., Christensen V., Pauly D. Fisheries impacts on North Atlantic ecosystems: Models and analyses. Fi-sheries Centre, Univ. of British Columbia. 2001. V. 3. 350 p.
  28. Hanache P., Spataro T., Format C., et al. Noise-induced reduction in the attack rate of a planktivorous freshwater fish revealed by functional response analysis // Freshwater. Biol. 2020. P. 75-85.
  29. Harper D., Blake R. Energetics of piscivorous predator-prey interactions // J. Theor. Biol. 1988. V. 134. P. 59–76.
  30. Helenius L.K., Borg J.P.G., Nurminen L. et al. The effects of turbidity on prey consumption and selection of zooplanktivorous Gasterosteus aculeatus L. // Aquat. Ecol. 2013. V. 47. P. 349–356.
  31. Houde E., Schekter R. Feeding by marine fish larvae: developmental and functional responses // Environ. Biol. Fishes. 1980. V. 5. P. 315–334.
  32. Hunsicker M.E., Ciannelli L., Bailey K.M. et al. Functional responses and scaling in predator–prey interactions of marine fishes: contemporary issues and emerging concepts // Ecol. Lett. 2011. V. 14. P. 1288–1299.
  33. Huntingford F.A., Ruiz-Gomez M.L. Three-spined sticklebacks Gasterosteus aculeatus as a model for exploring behavioural biology // J. Fish Biol. 2009. V. 75. P. 1943–1976.
  34. Huntingford F.A., Wright P.J. How stickleback learn to avoid dangerous feeding patches // Behav. Processes. 1989. V. 19. P. 181–189.
  35. Karve A.D., von Hippel F.A., Bell M.A. Isolation between sympatric anadromous and resident threespine stickleback species in Mud Lake, Alaska // Environ. Biol. Fishes. 2008. V. 81. P. 287–296.
  36. Kishi M.J., Kashiwai M., Ware D.M. et al. NEMURO – a lower trophic level model for the North Pacific marine ecosystem // Ecol. Model. 2007. V. 202. P. 12–25.
  37. Kottas C., Mangel A.M. Bayesian analysis of size-dependent overwinter mortality from size-frequency distributions // Ecology. 2010. V. 91. P. 1016–1024.
  38. Laundré J.W. Behavioral response races, predator–prey shell games, ecology of fear, and patch use of pumas and their ungulate prey // Ecology. 2010. V. 91. P. 2995–3007.
  39. Mikhailova E.S., Kasumyan A.O. Comparison of taste pre-ferences in the three-spined Gasterosteus aculeatus and nine-spined Pungitius pungitius sticklebacks from the White Sea Basin // J. Ichthyol. 2006. V. 46. Suppl. 2. P. S151–S160. https://doi.org/10.1134/s003294520611004x
  40. Miller T.J., Crowder L.B., Rice J.A., Binkowski F.P. Body size and the ontogeny of the functional response in fishes // Can. J. Fish. Aquat. Sci. 1992. V. 49. P. 805–812.
  41. Mofu L., South J., Wasserman R.J. et al. Inter-specific differences in invader and native fish functional responses illustrate neutral effects on prey but superior invader competitive ability // Freshwater Biol. 2019. fwb.13361.
  42. Murray G.P.D., Stillman R.A., Gozlan R.E. et al. Experimental predictions of the functional response of a freshwater fish // Ethology. 2013. V. 119. P. 751–761.
  43. Nolet B., Klaassen K. Retrodicting patch use by foraging swans in a heterogeneous environment using a set of functional responses // Oikos. 2009. V. 118. P. 431–439.
  44. Oaten A. Optimal foraging in patches: a case for stochasti-city // Theor. Pop. Biol. 1977. V. 12. № 3. P. 263–285.
  45. Ohman M.D. Behavioral responses of zooplankton to predation // Bull. Mater. Sci. 1988. V. 43. P. 530–550.
  46. Parker G.A., Stuart R.A. Animal behavior as a strategy optimizer: evolution of resource assessment strategies and optimal emigration thresholds // Am. Nat. 1976. V. 110. P. 1055–1076.
  47. Pyke G. Optimal foraging theory: a critical review // Annu. Rev. Ecol. Syst. 1984. V. 15. P. 523–575.
  48. Rastetter E.B., King A.W., Cosby B.J. et al. Aggregating fine-scale ecological knowledge to model coarser-scale attributes of ecosystems // Ecol. Appl. 1992. V. 2. P. 55–70.
  49. Reimchen T.E. Predators and evolution in threespine stickleback // Evolution of the threespine stickleback. Oxford: Oxford Univ. Press. 1994. P. 240–273.
  50. Rushbrook B.J., Barber I.A. Comparison of nest building by threespined sticklebacks Gasterosteus aculeatus from still and flowing waters // J. Fish Biol. V. 2008. V. 73. P. 746–752.
  51. Sharov A. The unknown Baranov. Forty years of polemics over the formal theory of the life of fishes // ICES J. Mar. Sci. 2020. V. 78. P. 743–754.
  52. Townsend C., Risebrow A. The influence of light level on the functional response of a zooplanktonivorous fish // Oecologia. 1982. V. 53. P. 293–295.
  53. Wasserman R.J., Mhairi A., Tatenda D. et al. Using functional responses to quantify interaction effects among predators // Funct. Ecol. 2016. V. 30. P. 1988–1998.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (110KB)
3.

Жүктеу (88KB)
4.

Жүктеу (70KB)

© Ф.С. Лобырев, 2023