Ecological and Biological Aspects of Effect of Nanoparticles and Toxic Forms of Metals on Marine and Opportunistic Bacteria
- 作者: Beleneva I.A.1, Kharchenko U.V.2
-
隶属关系:
- Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
- 期: 卷 50, 编号 3 (2024)
- 页面: 203-216
- 栏目: ОРИГИНАЛЬНЫЕ СТАТЬИ
- ##submission.datePublished##: 15.06.2024
- URL: https://journals.eco-vector.com/0134-3475/article/view/670352
- DOI: https://doi.org/10.31857/S0134347524030036
- ID: 670352
如何引用文章
详细
We studied effects of new materials such as, in particular, earlier obtained biogenic selenium and tellurium nanoparticles on the properties that determine pathogenic potential of type bacterial cultures and aggressiveness of marine-derived strains. We compared the effect of nanoparticles on bacteria to that of known toxicants in several experiments aimed to determine the growth characteristics and activity of enzymes on nutrient media, and also the adhesion to human red blood cells. The following concentrations of toxicants were used: sodium selenite and potassium tellurite, 100 μg/mL; copper sulfate, 10 μg/mL; selenium and tellurium nanoparticles, 100 μg/mL. We found that nanoparticles mainly inhibited the proteolytic, lipolytic, amylase, DNase, and hemolytic activities, whereas copper ions stimulated them. Selenium nanoparticles inhibited the pigment synthesis in Pseudomonas aeruginosa and Staphylococcus aureus. Nanoparticles and soluble forms of selenium and tellurium suppressed the bacterial adhesion to human red blood cells, while copper ions stimulated it. We also carried out an assessment of possible environmental risks of emergence/use of the toxicants under study in the marine environment using an Artemia salina model. Based on the analysis of selenium and tellurium nanoparticles, we could classify them as nontoxic compounds and sodium selenite, potassium tellurite, and copper sulfate as toxic ones.
全文:

作者简介
I. Beleneva
Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: beleneva.vl@mail.ru
ORCID iD: 0000-0001-9515-2522
俄罗斯联邦, Vladivostok
U. Kharchenko
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
Email: beleneva.vl@mail.ru
ORCID iD: 0000-0001-5166-5609
俄罗斯联邦, Vladivostok
参考
- СПИСОК ЛИТЕРАТУРЫ
- Брилис В.И., Брилене Т.А., Ленцнер Х.П., Ленцнер А.А. Методика изучения адгезивного процесса микроорганизмов // Лабораторное дело. 1986. № 4. C. 210–212.
- Бузолева Л.С., Богатыренко Е.А., Ким А.В. Влияние тяжелых металлов на факторы патогенности у возбудителей сапрозоонозов // Фундамент. исслед. 2013. № 10, ч. 14. С. 3076–3079.
- Ипатова В.И., Дмитриева А.Г., Дрозденко Т.В. Сравнительная токсичность солей и наночастиц серебра для микроводоросли Scenedesmus quadricauda // Токсикол. вестн. 2016. № 2 (137). С. 45–51.
- Обухова О.В. Влияние солей меди, цинка и кадмия на рост и уровень биологической агрессивности условно-патогенной микрофлоры // Тр. ВНИРО. 2016. Т. 162. С. 184–189.
- Практикум по микробиологии. М.: Академия. 2005.
- Справочник по микробиологическим и вирусологическим методам исследования. М.: Медицина. 1982.
- Acuña J.J., Jorquera M.A., Barra P.J. et al. Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops // Biol. Fertil. Soils. 2013. V. 49. P. 175–185.
- Ali S.G., Ansari M.A., Alzohairy M.A. et al. Effect of biosynthesized ZnO nanoparticles on multi-drug resistant Pseudomonas aeruginosa // Antibiotics. 2020. V. 9. № 5. Art. ID 260. doi: 10.3390/antibiotics9050260
- Aljerf L., AlMasri N. A gateway to metal resistance: Bacterial response to heavy metal toxicity in the biological environment // Ann. Adv. Chem. 2018. V. 2. P. 032–044.
- Beleneva I.A., Kharchenko U.V., Kukhlevsky A.D. et al. Biogenic synthesis of selenium and tellurium nanoparticles by marine bacteria and their biological activity // World J. Microbiol. Biotechnol. 2022. V. 38. № 11. Art. ID 188. doi: 10.1007/s11274-022-03374-6
- Cheng Z., Shi C., Gao X. et al. Biochemical and metabolomic responses of Antarctic bacterium Planococcus sp. O5 induced by copper ion // Toxics. 2022. V. 10. № 6. Art. ID 302. doi: 10.3390/toxics10060302
- Cheng M., Liang L., Sun Y. et al. Reduction of selenite and tellurite by a highly metal-tolerant marine bacterium // Int. Microbiol. 2024. V. 27. P. 203–212.
- Chua S.L., Sivakumar K., Rybtke M. et al. C-di-GMP regulates Pseudomonas aeruginosa stress response to tellurite during both planktonic and biofilm modes of growth // Sci. Rep. 2015. V. 5. Art. ID 10052. doi: 10.1038/srep10052
- Copper Water Quality Guideline for the Protection of Marine and Estuarine Aquatic Life (Reformatted Guideline from 1987), Water Quality Guideline Series, no. WQG-04, Prov. B.C., Victoria B.C.: B.C. Minist. Environ. Climate Change Strategy. 2019.
- Dawson R.M.C., Elliot D.C., Elliot W.H., Jones K.M. Data for Biochemical Research, 3rd ed., New York: Oxford Univ. Press. 1986.
- Eliseikina M.G., Beleneva I.A., Kukhlevsky A.D. et al. Identification and analysis of the biological activity of the new strain of Pseudoalteromonas piscicida isolated from the hemal fluid of the bivalve Modiolus kurilensis (F.R. Bernard, 1983) // Arch. Microbiol. 2021. V. 203. № 7. P. 4461–4473.
- Elshaer S.L., Shaaban M.I. Inhibition of quorum sensing and virulence factors of Pseudomonas aeruginosa by biologically synthesized gold and selenium nanoparticles // Antibiotics. 2021. V. 10. № 12. Art. ID 1461. doi: 10.3390/antibiotics10121461
- Escobar-Ramírez M.C., Castañeda-Ovando A., Pérez-Escalante E. et al. Antimicrobial activity of Se-nanoparticles from bacterial biotransformation // Fermentation. 2021. V. 7. Art. ID 130.
- doi: 10.3390/fermentation7030130
- Forootanfar H., Amirpour-Rostami S., Jafari M. et al. Microbial-assisted synthesis and evaluation the cytotoxic effect of tellurium nanorods // Mater. Sci. Eng. C. 2015. V. 49. P. 183–189.
- Frankel M.L., Booth S.C., Turner R.J. How bacteria are affected by toxic metal release // Metal Sustainability: Global Challenges, Consequences, and Prospects, R.M. Izatt, Ed., 1st ed., Hoboken, N.J.: Wiley, 2016.
- Gomes T., Araújo O., Pereira R. et al. Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis, Mar. Environ. Res., 2013, vol. 84, pp. 51–59.
- Gordon A.S., Howell L.D., Harwood V. Responses of diverse heterotrophic bacteria to elevated copper concentrations // Can. J. Microbiol. 1994. V. 40. № 5. P. 408–411.
- Kora A.J., Rastogi L. Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite // J. Environ. Manage. 2016. V. 181. P. 231–236.
- Kumar R., Nongkhlaw M., Acharya C., Joshi S.R. Growth media composition and heavy metal tolerance behaviour of bacteria characterized from the sub-surface soil of uranium rich ore bearing site of Domiasiat in Meghalaya // Indian J. Biotechnol. 2013. V. 12. P. 115–119.
- Leitão J.H., Sá-Correia I. Effects of growth-inhibitory concentrations of copper on alginate biosynthesis in highly mucoid Pseudomonas aeruginosa // Microbiology. 1997. V. 143. P. 481–488.
- Liang X., Zhang S., Gadd G.M. et al. Fungal-derived selenium nanoparticles and their potential applications in electroless silver coatings for preventing pin-tract infections // Regener. Biomater. 2022. V. 9. Art. ID rbac013. doi: 10.1093/rb/rbac013
- Lima de Silva A.A., de Carvalho M.A., de Souza S.A. et al. Heavy metal tolerance (Cr, Ag AND Hg) in bacteria isolated from sewage // Braz. J. Microbiol. 2012. V. 43. № 4. P. 1620–1631.
- Lin W., Zhang J., Xu J.-F., Pi J. The advancing of selenium nanoparticles against infectious diseases // Front Pharmacol. 2021. V. 12. Art. ID 682284. doi: 10.3389/fphar.2021.682284
- Liu G.Y., Nizet V. Color me bad: microbial pigments as virulence factors // Trends Microbiol. 2009. V. 17. № 9. P. 406–413.
- Lu Z.H., Solioz M. Copper-induced proteolysis of the CopZ copper chaperone of Enterococcus hirae // J. Biol. Chem. 2001. V. 276. № 51. P. 47822–47827.
- Maltman C., Yurkov V. The effect of tellurite on highly resistant freshwater aerobic anoxygenic phototrophs and their strategies for reduction // Microorganisms. 2015. V. 3. № 4. P. 826–838.
- Manfra L., Savorelli F., Di Lorenzo B. et al. Intercalibration of ecotoxicity testing protocols with Artemia franciscana // Ecol. Indic. 2015. V. 57. P. 41–47.
- Medina-Cruz D., Truong L.B., Sotelo E. et al. Bacterial-mediated selenium nanoparticles as highly selective antimicrobial agents with anticancer properties // RSC Sustainability. 2023. V. 1. P. 1436–1448.
- Mu D., Yu X., Xu Z. et al. Physiological and transcriptomic analyses reveal mechanistic insight into the adaption of marine Bacillus subtilis C01 to alumina nanoparticles // Sci. Rep. 2016. V. 6. art. ID 29953. doi: 10.1038/srep29953
- Prato E., Fabbrocini A., Libralato G. et al. Comparative toxicity of ionic and nanoparticulate zinc in the species Cymodoce truncata, Gammarus aequicauda and Paracentrotus lividus // Environ. Sci. Pollut. Res. 2021. V. 28. P. 42891–42900.
- Preda M., Mihai M.M., Popa L.I. et al. Phenotypic and genotypic virulence features of staphylococcal strains isolated from difficult-to-treat skin and soft tissue infections // PLoS One. 2021. V. 16. № 2. Art. ID e0246478. doi: 10.1371/journal.pone.0246478
- Rathgeber C., Yurkova N., Stackebrandt E. et al. Isolation of tellurite- and selenite-resistant bacteria from hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean // Appl. Environ. Microbiol. 2002. V. 6. № 9. P. 4613–4622.
- Selmani A., Ulm L., Kasemets K. et al. Stability and toxicity of differently coated selenium nanoparticles under model environmental exposure settings // Chemosphere. 2020. V. 250. Art. ID 126265. doi: 10.1016/j.chemosphere.2020.126265
- Stachurska X., Środa B., Dubrowska K. et al. Tolerance of environmental bacteria to heavy metals // Acta Sci. Pol. Zootech. 2020. V. 19. № 2. P. 63–74.
- Tarrant E., Riboldi G.P., McIlvin M.R. et al. Copper stress in Staphylococcus aureus leads to adaptive changes in central carbon metabolism // Metallomics. 2019. V. 11. № 1. P. 183–200.
- Virieux-Petit M., Hammer-Dedet F., Aujoulat F. et al. From copper tolerance to resistance in Pseudomonas aeruginosa towards patho-adaptation and hospital success // Genes. 2022. V. 13. № 2. Art. ID 301. doi: 10.3390/genes13020301
- Wu B., Huang R., Sahu M. et al. Bacterial responses to Cu-doped TiO2 nanoparticles // Sci. Total Environ. 2010. V. 408. № 7. P. 1755–1758.
- Xia S.K., Chen L., Liang J.Q. Enriched selenium and its effects on growth and biochemical composition in Lactobacillus bulgaricus // J. Agric. Food Chem. 2007. V. 55. № 6. P. 2413–2417.
- Yang J., Wang J., Yang K. et al. Antibacterial activity of selenium-enriched lactic acid bacteria against common food-borne pathogens in vitro // J. Dairy Sci. 2018. V. 101. № 3. P. 1930–1942.
- Zare B., Faramarzi M.A., Sepehrizadeh Z. et al. Biosynthesis and recovery of rod-shaped tellurium nanoparticles and their bactericidal activities // Mater. Res. Bull. 2012. V. 47. № 11. P. 3719–3725.
- Zhang C., Sun R., Xia T. Adaption/resistance to antimicrobial nanoparticles: Will it be a problem? // Nano Today. 2020. V. 34. Art. ID 100909. doi: 10.1016/j.nantod.2020.100909
- Zonaro E., Lampis S., Turner R.J. et al. Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms // Front. Microbiol. 2015. V. 6. Art. ID 584. doi: 10.3389/fmicb.2015.00584
补充文件
