A quantitative estimate of the effects of sea tides on aftershock activity: Kamchatka
- Authors: Baranov A.A.1,2, Baranov S.V.3, Shebalin P.N.1
-
Affiliations:
- Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
- Institute of Physics of the Earth, Russian Academy of Sciences
- Kola Branch, RAS Unified Geophysical Survey Federal Research Center
- Issue: No 1 (2019)
- Pages: 67-82
- Section: Articles
- URL: https://journals.eco-vector.com/0203-0306/article/view/11211
- DOI: https://doi.org/10.31857/S0203-03062019167-72
- ID: 11211
Cite item
Abstract
The issue of whether tidal forces really affect seismicity has been raised many times in the literature. Nevertheless, even though there seems to be a kind of consensus that such effects do exist, no quantitative estimates are available to relate tide parameters to changes in the level of seismic activity. Such estimation for aftershocks of large earthquakes near Kamchatka is the goal of the present study. We consider the influence on seismicity due to ocean tides only, because their effects are stronger than those of solid earth tides. Accordingly, we only consider earthquakes that occurred in the ocean. One important feature that distinguishes the present study from most other such research consists in the fact that we study the height of ocean tides and its derivative rather than tidal phases as the decisive factors. We considered 16 aftershock sequences of earthquakes near Kamchatka with magnitudes of 6 or greater. We also examined shallow background earthquakes along the coast of Kamchatka. Our basic model of aftershock rate was the Omori–Utsu law. The background seismicity distribution was assumed to be uniform over time. In both of these cases we used the actual distributions in space. The heights of ocean tides were estimated using the FES 2004 model (Lyard et al., 2006). The variation in activity from what the basic model assumes in relation to tidal wave height and its time derivative was estimated by the method of differential probability gain. The main practical result of this study consists in estimates of averaged differential probability gain functions for aftershock rate with respect to both of theconsidered factors. These estimates can be used for earthquake hazard assessment from aftershocks with ocean tides incorporated. The results of our analysis show a persistent tendency of aftershock rate increasing during periods when the ocean tide decreased at a high rate. For the background events, we found a typical tendency of event rate increasing when the ocean tide decreased with high tidal amplitudes. The difference in the main factors that affect aftershocks and background seismicity suggest the inference that the effects of tides on aftershocks are more likely to be direct dynamic initiation of events during high strain rates, while the effects on the backgroundevents were static in character.
Keywords
Full Text

About the authors
A. A. Baranov
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences; Institute of Physics of the Earth, Russian Academy of Sciences
Author for correspondence.
Email: baranov@ifz.ru
Russian Federation, 84/32, Profsoyuznaya str., Moscow, 117997; 10, bld. 1, B. Gruzinskaya str., Moscow, 123242
S. V. Baranov
Kola Branch, RAS Unified Geophysical Survey Federal Research Center
Email: baranov@ifz.ru
Russian Federation, 14, Fersmana str., Apatity, Murmansk Region, 184209
P. N. Shebalin
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
Email: p.n.shebalin@gmail.com
Russian Federation, 84/32, Profsoyuznaya str., Moscow, 117997
References
- Баранов С.В., Чебров Д.В. Моделирование и прогнозирование афтершоковых процессов Камчатки // Физика Земли. 2012. № 11–12. С. 35–46.
- Баранов С.В., Шебалин П.Н. О прогнозировании афтершоковой активности. 1. Адаптивные оценки на основе законов Омори и Гутенберга–Рихтера // Физика Земли. 2016. № 3. С. 82 –01.
- Ермаков В.А. Тектонические предпосылки изучения сейсмичности Камчатки. Сейсмичность и сейсмическое районирование Северной Евразии // М.: ИФЗ РАН. 1993. Вып. 1. С. 228–240.
- Каталог землетрясений Камчатки и Командорских островов Кольского филиала Геофизической службы РАН http://www.emsd.ru/sdis/earthquake/catalogue/catalogue.php
- Лутиков И.А., Родина С.Н. Временные и энергетические параметры афтершокового процесса Курило-Камчатских землетрясений // Геофизические исследования. 2013. Т. 14. № 4. С. 23–35.
- Молчан Г.М., Дмитриева О.Е. Идентификация афтершоков: обзор и новые подходы // Вычислительная сейсмология. 1991. Вып. 24. С. 19–50.
- Николаев В.А. Связь сейсмичности с фазами кратных и разностных приливных волн. // Докл. РАН. 1996. Т. 349. № 3. С. 389–394.
- Николаев В.А. Реакция сильных землетрясений на фазы земных приливов // Физика Земли. 1994. № 11. С. 49–55.
- Николаев А.В., Николаев В.А. Связь афтершоков сильных землетрясений с приливными фазами как индикатор напряженного состояния среды // Докл. АН СССР. 1993. Т. 330. № 2. C. 261–266.
- Салтыков В.А. Особенности связи высокочастотного сейсмического шума и лунно-солнечных приливов // Доклады Академии наук. 1995. Т. 341. № 3. С. 406–407.
- Салтыков В.А. Механизм приливных эффектов в сейсмичности на основе модели амплитудно-зависимой диссипации// Физическая мезомеханика. 2014. № 17. С. 103–110.
- Салтыков В.А., Иванов В.В., Кугаенко Ю.А. Воздействие земных приливов на сейсмичность перед землетрясением 13 ноября 1993 года Mw = 7.0 (Камчатка) // Физика Земли. 2004. № 7. С. 25–43.
- Салтыков В.А., Кугаенко Ю.А. Особенности пространственной связи приливной компоненты сейсмических шумов с областями подготовки сильных землетрясений (по материалам долговременных режимных наблюдений на Камчатке) // Физика Земли. 2007. № 9. С. 48–60.
- Салтыков В.А., Иванов В.В. Вариации статистических параметров сейсмичности, связываемых с земными приливами // Вестник КРАУНЦ. Серия Науки о Земле. 2003. № 1. С. 130–134.
- Салтыков В.А., Кравченко Н.М. Комплексный анализ сейсмичности Камчатки 2005–2007 гг. на основе регионального каталога // Вулканология и сейсмология. 2009. № 4. С. 53–63.
- Смирнов В.Б. Прогностические аномалии сейсмического режима. I. Методические основы подготовки исходных данных // Геофизические исследования. 2009. Т. 10. № 2. С. 7–22.
- Федотов С.А. Энергетическая классификация Курило-Камчатских землетрясений и проблема магнитуд. М.: Наука, 1972. 117 с.
- Чебров В.Н., Дрознина С.Я., Сениюков С.Л. Камчатка и Командорские острова // Землетрясения России в 2014 году. Обнинск: ГС РАН, 2016. С. 60–66.
- Шебалин П.Н., Баранов С.В. Экспресс оценивание опасности сильных афтершоков района Камчатки и Курильских островов // Вулканология и сейсмология. 2017. № 4. С. 57–66.
- Юрков Е.Ф., Гитис В.Г. О связи сейсмичности с фазами приливных волн //Физика Земли. 2005. № 4. С. 4–15.
- Aki K. Maximum likelihood estimate of b in the formula log N = a – bM and its confidence level // Bull. Earthquake Res. Inst. 1965. V. 43. P. 237–239.
- Atkinson B. K. Subcritical crack growth in geological materials // J. of Geophys. Res. Atmospheres. 1984. V. 89(B6). P. 4077–4114.
- Baiesi M., Paczuski M. Scale-free networks of earthquakes and aftershocks // Physical Rev. 2004. E 69. 066106.
- Beeler N.M., Lockner D.A. Why earthquakes correlate weakly with the solid Earth tides: effects of periodic stress on the rate and probability of earthquake occurrence // J. of Geophys. Res. 2003. V. 108 (B8)., P. 2156–2202. Burton P. Geophysics: Is there coherence between Earth tides and earthquakes? // Nature. 1986. V. 321(6066). P. 115–115.
- Cao A.M., Gao S.S. Temporal variations of seismic b-values beneath northeastern japan island arc // Geophys. Res. Lett. 2002. V. 29. P. 481–482.
- Chen L., Chen J. G., Xu Q. H. Correlation between solid tides and worldwide earthquakes M ≥ 7 since 1900 // Natural Hazards and Earth System Sciences. 2012. V. 12. P. 587–590.
- Cochran E. S., Vidale J. E., Tanaka S. Earth tides can trigger shallow thrust fault earthquakes // Science. 2004. V. 306. P. 1164–1166.
- Crockett R.G., Gillmore M.G.K., Phillips P.S., Gilbertson D.D. Tidal synchronicity of the 26 December 2004 Sumatran earthquake and its aftershocks // Geophys. Res. Lett. 2006. V. 33. L19302.
- Ekström G., Nettles M., Dziewonski A.M. The global CMT project 2004–2010: Centroid moment tensors for 13,017 earthquakes // Phys. Earth Planet. Inter. 2012. V. 200–201. P. 1–9.
- Emter D. Tidal triggering of earthquakes and volcanic events // Tidal Phenomena. 1997. P. 293–309.
- Hainzl S. Rate-Dependent Incompleteness of Earthquake Catalogs // Seismolog. Res. Lett. 2016. V. 96(2A) P. 337–344.
- Hardebeck J. L., Nazareth J. J., Hauksson E. The static stress change triggering model: Constraints from two southern California aftershocks sequences // J. of Geophys. Res. 1998. V. 103. P. 24427–24437.
- Heaton T. H. Tidal triggering of earthquakes // Geophys. J. R. Astr. Soc. 1975. V. 43 P. 307–326.
- Heaton T. H. Tidal triggering of earthquakes // Bull. Seism. SOC. Am. 1982. V. 72. P. 2181–2200.
- Helmstetter A., Kagan Y.Y., Jackson D. Comparison of short-term and time-independent earthquake forecast models for southern California // Bull. Seismol. Soc. Am. 2006. V. 96(1). P. 90–106.
- Hinzle S. Rate-Dependent Incompleteness of Earthquake Catalogs // Seismolog. Res. Lett. 2016. V. 87. № 2A. P. 337–344.
- Holschneider M., Narteau C., Shebalin P. et al. Bayesian analysis of the modified Omori law // J. of Geophys. Res. 2012. V. 117. B05317 P. 2156–2202.
- Ide S., Tanaka Y. Controls on plate motion by oscillating tidal stress: evidence from deep tremors in western Japan // Geophys. Res. Lett. 2014. V. 41. P. 3842–3850.
- Ide S., Yabe S., Tanaka Y. Earthquake potential revealed by tidal influence on earthquake size–frequency statistics // Nature Geoscience. 2016. V. 9. P. 834–837.
- Kilb D., Gomberg J., Bodin P. Aftershock triggering by complete Coulomb stress changes // J. of Geophys. Res.-Solid Earth. 2002. V. 107. B4. P. ESE 2-1–ESE 2-14.
- Klein F.W. Earthquake swarms and the semidiurnal solid earth tide // Geophys. J. International. 1976a. V. 45. P. 245–295.
- Klein F.W. Tidal triggering of reservoir-associated earthquakes // Engineering Geology. 1976b. V. 10. P. 197–210.
- Le Provost C., Genco M.L., Lyard F. et al. Spectroscopy of the world ocean tides from a finite element hydrodynamic model // J. of Geophys. Res. 1994. V. 99. P. 24777–24797.
- Le Provost C.,Lyard F., Molines J.M., Genco M.L. A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-derived data set // J. of Geophys. Res. 1998. V. 103. P. 5513–5529.
- Le Provost C., Vincent P. Some tests of precision for a finite element model of ocean tides // J. Comput. Phys. 1986. V. 65. P. 273–291.
- Lockner D. A. A generalized law for brittle deformation of Westerly granite // J. of Geophys. Res. 1998. V. 103. P. 5107–5123.
- Lockner D.A., Beeler N.M. Premonitory slip and tidal triggering of earthquakes // J. of Geophys. Res. 1999. V. 104(B9). P. 20133–20151.
- Lyard F., Lefèvre F., Letellier T., Francis O. Modelling the global ocean tides: a modern insight from FES 2004 // Ocean Dynamics. 2006. V. 56. P. 394–415.
- Melchior P. J. The Tides of the Planet Earth, Pergamon, Tarrytown, N.Y., Oxford, 1983. 653 p.
- Métivier L., de Viron O., ConradC.P. et al. Evidence of earthquake triggering by the solid earth tides // Earth Planet. Sci. Lett. 2009. V. 278. P. 370–375.
- Molchan G.M., Dmitrieva O.E. Aftershock identification: methods and new approaches // Geophys. J. International. 1992. V. 109. P. 501–516.
- Molchan G.M. Structure of optimal strategies in earthquake prediction // Tectonophysics. 1991. V. 193. P. 267–276.
- Narteau C., ShebalinP., Holschneider M. Temporal limits of the power law aftershock decay rate // J. of Geophys. Res. 2002. V. 107(B12). P. 1201–1214.
- Rydelek P.A., Sacks I.S., Scarpa R. On tidal triggering of earthquakes at Campi Flegrei, Italy // Geophys. J. International. 1992. V. 109. P. 125–137.
- Shebalin P. Combining probabilistic seismicity models with precursory information // Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies / Eds. O. Pulinetc // AGU Book Scolar One, Wiley, 2018.
- Shebalin P., Baranov S. Long-delayed aftershocks in New Zealand and the 2016 M 7.8 Kaikoura earthquake // Pure and Applied Geophysics. 2017.
- Shebalin P.N., Narteau C., Zechar J.D., Holschneider M. Combining earthquake forecasts using differential probability gains // Earth Planets Space. 2014. 66:37.
- Shebalin P.N., Narteau C., Holschneider M. From alarm-based to rate-based earthquake forecast models // Bulletin of the Seismological Society of America. 2012. V. 102. P. 64–72.
- Shebalin P.N., Narteau C. Depth dependent stress revealed by aftershocks // Nature Communications. 2017. V. 8. 1317. doi: 10.1038/s41467-017-01446-y
- Scholz C. Microfractures, aftershocks, and seismicity // Bulletin of the Seismological Society of America. 1968. V. 58. P. 1117–1130.
- Schuster A. On lunar and solar periodicities of earthquakes // Proc. R. Soc. London. 1897. V. 61. P. 455–465.
- Souriau M., Souriau A., Gagnepain J. Modeling and detecting interactions between Earth tides and earthquakes with application to an aftershock sequence in the Pyrenees // Bull. Seismol. Soc. Am. 1982. V. 72. P. 165–180.
- Stein R. S. The role of stress transfer in earthquake occurrence // Nature. 1999. V. 402. P. 605– 609.
- Stein R. S. Tidal triggering caught in the act // Science. 2004. V. 305(5688). P. 1248–1249.
- Stroup D.F., Bohnenstiehl D.R., Tolstoy M. et al. Pulse of the seafloor: Tidal triggering of microearthquakes at 9°50′ N East Pacific Rise // Geophys. Res. Lett. 2007. V. 34. L15301.
- Tanaka S. Tidal triggering of earthquakes prior to the 2011 Tohoku-Oki earthquake (Mw 9.1) // Geophys. Res. Lett. 2012. V. 39. L00G26. doi: 10.1029/2012GL051179
- Tanaka S. Tidal triggering of earthquakes precursory to the recent Sumatra megathrust earthquakes of 26 December 2004 (Mw 9.0), 28 March 2005 (Mw 8.6), and 12 September 2007 (Mw 8.5) // Geophys. Res. Lett. 2010. V. 37. L02301.
- Tanaka S., Ohtake M., Sato H. Tidal triggering of earthquakes in Japan related to the regional tectonic stress // Earth Planets Space. 2004. V. 56. P. 511–515.
- Tanaka S., Ohtake M., Sato H. Evidence for tidal triggering of earthquakes as revealed from statistical analysis of global data // J. of Geophys. Res. 2002. V. 107(B10). P. 2211.
- Tsuruoka H., Ohtake M., Sato H. Statistical test of the tidal triggering of earthquakes: Contribution of the ocean tide loading effect // Geophys. J. International. 1995. V. 122. P. 183–194.
- Utsu T. A. statistical study on the occurrence of aftershocks // Geophys. Magazine. 1961. V. 30. P. 521–605.
- Vidale J.E., Agnew D.C., Johnston M.J.S., Oppenheimer D.H. Absence of earthquake correlation with Earth tides: An indication of high preseismic fault stress rate // J. of Geophys. Res. 1998. V. 103(B10). P. 24567–24572.
- Varga P., Grafarend E. Influence of Tidal Forces on the Triggering of Seismic Events // Pure and Applied Geophysics. 2017. P. 1–9.
- Wiemer S., Wyss M. Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western United States, and Japan // Bulletin of the Seismological Society of America. 2000. V. 90. P. 4859–4869. Wilcock W.S. Tidal triggering of microearthquakes on the Juan de Fuca Ridge // Geophys. Res. Lett. 2001. V. 28. P. 3999–4002.
- Woessner J., Wiemer S. Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty // Bulletin of the Seismological Society of America. 2005. V. 95. P. 2684–2698. Zhang L., Zhuang J. An improved version of the Load/Unload Response Ratio method for forecasting strong aftershocks // Tectonophysics. 2011. V. 509. P. 191–197.
- Zaliapin I., Ben-Zion Y. Earthquake clusters in southern California I: Identification and stability // J. of Geophys. Res. 2013. V. 118. P. 2847–2864.
- Zechar J.D., Jordan T.H. Testing alarm-based earthquake predictions // Geophys J. Int. 2008. V. 172. P. 715–724.
Supplementary files
