Using the Paratunsky geothermal field to provide heating for Kamchatka

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The Paratunsky geothermal field has been in operation since 1964, mostly in a self-flowing mode, with a discharge rate of approximately 250 kg/s of thermal water at temperatures of 70–90°С (47 Mw, with the waste water having a temperature of 35°С). The water drawn from the field is used for local heating, spa heating, and for greeneries in the villages of Paratunsky and Termal’nyi (3000 residents). The potential market of thermal energy in Kamchatka includes Petropavlovsk-Kamchatskii (180000 residents), Elizovo (39 000), and Vilyuchinsk (22 000). The heat consumption in the centralized heating systems for Petropavlovsk-Kamchatskii is 1 623 000 GCal per annum (216 Mw). A thermohydrodynamic model developed previously is used to show that the Paratunsky geothermal reservoir can be operated in a sustainable mode using submersible pumps at an extraction rate of as much as 1375 kg/s, causing a moderate decrease in pressure (by no more than 8 bars) and temperature (by no more than 4°С) in the reservoir. Additional geothermal sources of heat energy may include the Verkhne-Paratunsky and Mutnovsky geothermal fields.

Full Text

Restricted Access

About the authors

A. V. Kiryukhin

Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences

Author for correspondence.
Email: AVKiryukhin2@mail.ru
Russian Federation, bul’var Piipa 9, Petropavlovsk-Kamchatskii, 683006 Russia

N. B. Zhuravlev

Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences

Email: AVKiryukhin2@mail.ru
Russian Federation, bul’var Piipa 9, Petropavlovsk-Kamchatskii, 683006 Russia

References

  1. Кирюхин А.В., Асаулова Н.П., Ворожейкина Л.А. и др. Условия формирования и моделирование эксплуатации Паратунского геотермального месторождения (Камчатка) // Геоэкология. Инженерная геология. Гидрогеология. Геокриология. 2017. № 3. С. 16–30.
  2. Федотов С.А., Сугробов В.М., Уткин И.С., Уткина Л.И. Возможности использования тепла магматического очага Авачинского вулкана и окружающих его пород для тепло- и электроснабжения // Вулканология и сейсмология. 2007. № 1. С. 32–46.
  3. Arnason B. Hydrothemal systems in Iceland traced by deuterium // Geothermics. 1976. V. 5. № 1/4. P. 71–81.
  4. Axelsson G., Gunnlaugsson E. Long Term Monitoring of High- and Low- Enthalpy Fields Under Exploitation // WGC2000 Short Courses, Japan. 2000. P. 125–152.
  5. Axelsson G., Gunnlaugsson E., Jónasson Th., Ólafsson M. Low temperature geothermal utilization in Iceland – Decades of experience // Geothermics. 2010. № 39. P. 329–338.
  6. Bodvarsson G. Temperature/flow statistics and thermodynamics of low temperature geothermal systems in Iceland // J. Volcanol. Geotherm. Res. 1983. № 19. P. 255–280.
  7. Genter A., Baujard C., Cuenot N. et al. Geology, Geophysics and Geochemistry in the Upper Rhine Graben: the frame for geothermal energy use // European Geothermal Congress 2016, Strasbourg, France, 19–24 Sept. 2016. 5 p.
  8. Johannesson P., Chatenay C., Thorsteinsson H. et al. Technology and innovation can Foster geothermal District Heating Development // An Icelandic Case Study. Strasbourg, EGC-2016, http://www.verkis.com/media/pdf/id-624-Westman-islands-utgefid_mlogo.pdf
  9. Kiryukhin A.V., Asaulova N.P., Vorozheikina L.A. et al. Recharge Conditions of the Low Temperature Paratunsky Geothermal Reservoir, Kamchatka // Russia Procedia Earth and Planetary Science. 2017. № 17. P. 132–135.
  10. Kiryukhin A.V., Vorozheikina L.A., Voronin P.О., Kiryukhin P.A. Thermal-Permeability structure and recharge conditions of the low temperature Paratunsky geothermal reservoirs, Kamchatka, Russia // Geothermics. 2017. 70. P. 47–61.
  11. Kiryukhin A.V., Polyakov A.Y., Usacheva O.O., Kiryukhin P.A. Thermal Hermal-Permeability Structure and Recharge Conditions of the Mutnovsky High Temperature Geothermal Field (Kamchatka, Russia) // J. of Volcanol. and Geotherm. Res. 2018. 356. P. 36–55. doi: 10.1016/j.jvolgeores.2018.02.010
  12. Rybach L. Geothermal Systems, Conductive Heat Flow, Geothermal Anomalies // Geothermal systems. Principles and Case Histories. N.Y.: Pergamon Press, 1981. P. 3–32.
  13. Schill E., Genter A. EGS Geothermal Challenges within the Upper Rhine Valley based on Soultz Experience // Proceedings Third European Geothermal Review, Mainz. 2003. 16 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The main consumers of thermal energy in Kamchatka, potential sources of geothermal heat supply and possible routes of coolant pipelines.

Download (108KB)
3. Fig. 2. Geometry and zoning of the 4HM-GROWA thermohydrodynamic model of the Paratunsky geothermal field. a - stratification and zoning of the upper layer (sublayers -47.5, -92.5 and -137.5 m abs. with a capacity of 45 m each) of the thermo-dynamic model of the Paratunsky geothermal field 4НМ-GROWA. 1 - GROWA domain - groundwater horizon; 2 - CAPRK domain - separating aquitard; 3 - domain CAPR2 - low-permeable domain. Explanations in the text and in table. one.

Download (364KB)
4. Fig. 2. Ending. b - middle layer zoning (sublayers with marks -260, -460, -660, -860, -1060, -1260 m abs. with a capacity of 200 m each) of the thermo-hydrodynamic model of the Paratunsky geothermal field 4HM-GROWA. 1 — RESPR domains corresponding to a high permeability production reservoir; 2 - BUFER domain corresponding to the buffer zone with increased permeability near the open eastern border; 3 - RESER - domain of enclosing rocks with low permeability; 4 - forecasted production wells with submersible pumps (see Section 4); 5 - the influx of chloride waters into the reservoir during its operation; 6 - model borders: a - impenetrable, b - open; 7 - projections of the zones of the inflow of the coolant, shown in Fig. 2c (domain BASEF). Explanations in the text and in table. 1. c - zoning of the lower layer (Z = -2180 m abs.) Of the thermo-hydrodynamic model of the Paratunsky geothermal field 4HM-GROWA. 1 - the BASEF domain is defined with high permeability and inflow of the deep heat carrier (flow rate (kg / s) and enthalpy (kJ / kg) are shown in numbers), it corresponds to the sections: Medium (SR), Lower Paratunsky (NP), Northern (N) Mikizhinsky (M); 2 - domain BASE, corresponds to low-permeable host rocks. Explanations in the text and in table. one.

Download (361KB)
5. Fig. 3. Forecast of a decrease in pressure and temperature at various costs of water withdrawal and operation of the Paratunsky geothermal field over a period of 25 years. a - predicted lowering of temperature and pressure in the middle section in SLE. 9 (z = -260 m abs.) With a total consumption of 825 kg / s, 1100 kg / s, 1375 kg / s.

Download (143KB)
6. Fig. 3. Ending. b - predicted lowering of temperature and pressure on the Nizhne-Paratunsky area in SLE. 39 (z = -460 m abs.) With a total consumption of 825 kg / s, 1100 kg / s, 1375 kg / s. (c) predicted lowering of temperature and pressure in the Northern section in SLE. 66 (z = -260 m abs.) With a total consumption of 825 kg / s, 1100 kg / s, 1375 kg / s.

Download (134KB)
7. Fig. 4. Net present value of the project for the operation of the Paratunsky geothermal field with submersible pumps.

Download (158KB)

Copyright (c) 2019 Russian Academy of Sciences