Global statistics of aftershocks following large earthquakes: independence of times and magnitudes
- Authors: Baranov S.V.1, Shebalin P.N.2
-
Affiliations:
- Kola Branch, Unified Geophysical Survey Federal Research Center, Russian Academy of Sciences
- Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
- Issue: No 2 (2019)
- Pages: 67-76
- Section: Articles
- URL: https://journals.eco-vector.com/0203-0306/article/view/11917
- DOI: https://doi.org/10.31857/S0203-03062019267-76
- ID: 11917
Cite item
Abstract
This paper considers the global statistics of times of largest aftershocks relative to the times of the corresponding main shocks. A large data set was used to show that the time-dependent distribution of largest aftershocks obeys a power law distribution. This is analogous to the Omori law for the sequence of all after- shocks. It is also shown that the times of the second, etc., largest aftershocks obey the same distribution. Thereby, we have confirmed the hypothesis that the times and magnitudes in an aftershock sequence are independent and make a good case for the Reasenberg-Jones representation of the aftershock process as a superposition of the Omori-Utsu law and the Gutenberg–Richter relation. Events that are smaller than the largest in an aftershock sequence show no delay relative to the largest event; this rejects the idea of the after- shock process as a direct failure cascade involving gradual transitions from larger to lesser scales, which imposes certain restrictions on the widely popular stochastic models of aftershock generation as branching processes. The above result is important in practice for prediction of aftershock activity and for assessing the hazard of large aftershocks.
Full Text

About the authors
S. V. Baranov
Kola Branch, Unified Geophysical Survey Federal Research Center, Russian Academy of Sciences
Author for correspondence.
Email: bars.vl@gmail.com
Russian Federation, Fersmana ul. 14, Apatity, Murmansk Region, 184209 Russia
P. N. Shebalin
Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences
Email: p.n.shebalin@gmail.com
Russian Federation, Profsoyuznaya ul. 84/32, Moscow, 117997 Russia
References
- Баранов С.В., Шебалин П.Н. О прогнозировании активности афтершоков. 1. Адаптивные оценки на основе законов Омори и Гутенберга-Рихтера // Физика Земли. 2016. № 3. С. 82–101.
- Баранов А.А., Баранов С.В., Шебалин П.Н. Количественная оценка степени воздействия морских приливов на активность афтершоков в районе Камчатки // Вулканология и сейсмология. 2019. № 1. С. 67–82.
- Зотов О.Д., Завьялов А.Д., Гульельми А.В., Лавров И.П. О возможном эффекте кругосветных поверхностных сейсмических волн в динамике повторных толчков сильных землетрясений // Физика Земли. 2018. № 1. С. 187–201. doi: 10.7868/S0002333718010155
- Молчан Г.М., Дмитриева О.Е. Идентификация афтершоков: обзор и новые подходы // Вычислительная сейсмология. 1991. Вып. 24. С. 19–50.
- Смирнов В.Б. Оценка длительности цикла разрушения литосферы Земли по данным каталогов землетрясений // Физика Земли. 2003. № 10. С. 13–32.
- Смирнов В.Б. Прогностические аномалии сейсмического режима. I. Методические основы подготовки исходных данных // Геофизические исследования. 2009. Т. 10. № 2. С. 7–22.
- Смирнов В.Б., Пономарев А.В., Бернар П., Патонин А.В. Закономерности переходных режимов сейсмического процесса по данным лабораторного и натурного моделирования // Физика Земли. 2010. № 2. С. 17–49.
- Шебалин П.Н. Афтершоки как индикаторы напряженного состояния в системе разломов // ДАН. 2004. Т. 398. № 2. С. 249–254.
- Шебалин П.Н., Баранов С.В. Экспресс оценка опасности сильных афтершоков района Камчатки и Курильских островов // Вулканология и сейсмология. 2017. № 4. С. 57–66.
- ANSS Comprehensive Earthquake Catalog (ComCat) URL: https://earthquake.usgs.gov/data/comcat/
- Bath M. Lateral inhomogeneities in the upper mantle // Tectonophysics. 1965. V. 2. P. 483–514.
- Felzer K.R., Rachel E. A., Ekstrom G.A. Common Origin for Aftershocks, Foreshocks, and Multiplets // Bulletin of the Seismological Society of America. 2004. V. 94. № 1. P. 88–98.
- Hardebeck L., Hauksson E. Crustal stress field in southern California and its implications for fault mechanics // Journal of Geophys. Res. 2001. V. 106. № B10. P. 21,859–21,882.
- Helmstetter A., Kagan Y.Y., Jackson D.D. Comparison of short-term and time-independent earthquake forecast models for southern California // Bulletin of the Seismological Society of America. 2006. V. 96(1). P. 90–106.
- Holschneider M., Narteau C., Shebalin P. et. al. Bayesian analysis of the modified Omori law // Journal of Geophys. Res. 2012. V. 117. B05317. doi: 10.1029/2011JB009054.
- Gerstenberger M.C., Wiemer S., Jones L.M., Reasenberg P.A. Real-time forecasts of tomorrow’s earthquakes in California // Nature. 2005. V. 435. P. 328–331.
- Gutenberg B., Richter C.F. Frequency of Earthquakes in California // Bulletin of the Seismological Society of America. 1944. V. 34. P. 185–188.
- Narteau C., Shebalin P., Holschneider M. Temporal limits of the power law aftershock decay rate // Journal of Geophys. Res. 2002. V. 107. C. 1201–1214.
- Narteau C., Shebalin P., Holschneider M. et al. Direct simulations of the stress redistribution in the scaling organization of fracture tectonics (SOFT) model // Geophys. J. Int. 2000. V. 141. P. 115–135.
- Ogata Y. Statistical models for earthquake occurrences and residual analysis for point processes // J. Amer. Statis. Assoc. 1988. V. 83. P. 9–27.
- Reasenberg P.A., Jones L.M. Earthquake Hazard After a Mainshock in California // Science. 1989. V. 242. № 4895. P. 1173–1176. doi: 10.1126/science.243.4895.1173.
- Shebalin P., Baranov S. Long-Delayed Aftershocks in New Zealand and the 2016 M7.8 Kaikoura Earthquake // Pure Appl. Geophys. 2017. V. 174. P. 3751–3764.
- doi: 10.1007/s00024-017-1608-9.
- Shebalin P., Narteau C. Depth dependent stress revealed by aftershocks // Nature Communications. 2017. V. 8. № 1317. doi: 10.1038/s41467-017-01446-y
- Smirnov N. Table for Estimating the Goodness of Fit of Empirical Distributions // Annals of Mathematical Statistics. 1948. № 19. P. 279–281.
- Utsu T. A. statistical study on the occurrence of aftershocks // Geophysical Magazine. 1961. V. 30. P. 521–605.
Supplementary files
