The structure and evolution of the east Greenland continental margin before spreading started on the Kolbeinsey ridge

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

An analysis of the deep structure of the East Greenland margin (Blosseville Kyst to Liverpool Land) and of the Jan Mayen microcontinent resulted in the development of a crustal model that was valid for both before their disruption. A joint model clearly demonstrates the net result of rifting phases during Paleozoic, Mesozoic, and Cenozoic time. Starting from the Devonian, a graben-shaped depression about 180 km wide existed between Liverpool Land and the Jan Mayen Ridge; the depression was formed by subsiding of the crystalline basement that was not compensated by sedimentation. The marine basin was approximately 2 km deep during late Devonian time. The west-east joint deep crustal section clearly defines three depths in the upper mantle that fit dome-like surfaces superposed on each other. We interpret these surfaces as temperature fronts of mantle plumes that differ by their time of origin: Paleozoic, Mesozoic to Cenozoic, and late Cenozoic. The rim of the present-day Blosseville Kyst and Liverpool Land shelf is found to be underlain by a basement high that is associated with the axis of a positive free-air gravity anomaly. East of the high along the anomaly axis, we identified a continent-ocean boundary. The present-day phase in the geological evolution of the Greenland-Norwegian region north of Iceland is characterized by an increased thermal state of the lithosphere and manifestations of intraplate tectonics.

Full Text

Restricted Access

About the authors

S. V. Usenko

Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences; Schmidt Institute of Physics of the Earth, Russian Academy of Science

Author for correspondence.
Email: usenko@mitp.ru
Russian Federation, Profsoyuznaya ul. 84/32, Moscow, 117997; Bol’shaya Gruzinskaya ul. 10, str. 1, Moscow, 123242

T. V. Prokhorova

Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences

Email: tatprokh@mitp.ru
Russian Federation, Profsoyuznaya ul. 84/32, Moscow, 117997

References

  1. Береснев А.Ф., Удинцев Г.Б. Морфоструктура дна океана. Сейсмическое профилирование (1969–1998 гг.). М.: Полиграфические мастерские, 2006. 174 с.
  2. Becker J.J., Sandwell D.T., Smith W.H.F. et al. Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS // Marine Geodesy. 2009. V. 32. № 4. C. 355–371. doi: 10.1080/01490410903297766.
  3. Berndt C., Planke S., Alvestad E. et al. Seismic volcanostratigraphy of the Norwegian Margin: constraints on tectonomagmatic break-up processes // Journal of the Geological Society. 2001. V. 158. P. 413–426. doi: 10.1144/jgs.158.3.413.
  4. Blischke A., Gaina C., Hopper J.R. et al. The Jan Mayen microcontinent: an update of its architecture, structural development and role during the transition from the Ægir Ridge to the mid-oceanic Kolbeinsey Ridge // Geological Society, London, Special Publications. 2017. V. 447. P. 299–337. doi: 10.1144/SP447.5.
  5. Brandsdottir B., Hooft E.E.E., Mjelde R., Murai Y. Origin and evolution of the Kolbeinsey Ridge and Iceland Plateau, N-Atlantic // Geochem. Geophys. Geosyst. 2015. V. 16. P. 612–634. doi: 10.1002/2014GC005540. doi: 10.1002/2014GC005540.
  6. Breivik A.J., Mjelde R., Faleide J.I., Murai Y. Rates of continental breakup magmatism and seafloorspreading in the Norway Basin – Iceland plume interaction // J. Geophys. Res. 2006. V. 111. Article B07102. doi: 10.1029/2005JB004004.
  7. Breivik A.J., Mjelde R., Faleide J.I., Murai Y. The eastern Jan Mayen microcontinent volcanic margin // Geophysical Journal International. 2012. V. 188. № 3. P. 798–818. doi: 10.1111/j.1365-246X.2011.05307.x.
  8. Butt F.A., Elverhøi A., Forsberg C.F., Solheim A. Evolution of the Scoresby Sund Fan, central East Greenland-evidence from ODP Site 987 // Norsk Geologisk Tidsskrift. 2001. V. l81. P. 3–15.
  9. Christensen N.I, Mooney W.D. Seismic Velocity Structure and Composition of the Continental Crust: A Global View // J. Geophys. Res. 1995. V. 100. P. 9761–9788. doi: 10.1029/95JB00259.
  10. Eldholm O., Faleide J.I., Myhre A.M. Continent – ocean transition at the Western Barents Sea/Svalbard continental margin // Geology. 1987. V. 15. P. 1118–1122.
  11. Eldholm O., Skogseid J., Sundvor E., Myhre A.M. The Norwegian-Greenland Sea // The Arctic Ocean Region, Arthur Grantz, L. Johnson, J. F. Sweeney, Geological Society of America. 1990. P. 351–363. doi: 10.1130/DNAG-GNA-L.351
  12. Faerseth R.B., Lien T. Cretaceous evolution in the Norwegian Sea—a period characterized by tectonic quiescence // Marine and Petroleum Geology. V. 19. № 8. 2002. P. 1005–1027. doi: 10.1016/S0264-8172(02)00112-5.
  13. Gaina C., Gernigon L., Ball P. Palaeocene–Recent plate boundaries in the NE Atlantic and the formation of the Jan Mayen microcontinent // Journal of the Geological Society. 2009. V. 166. P. 601–616. doi: 10.1144/0016-76492008-112.
  14. Gernigon L., Gaina C., Olesen O. et al. The Norway Basin revisited: From continental breakup to spreading ridge extinction // Marine and Petroleum Geology. 2012. V. 35. № 1. P. 1–19. doi: 10.1016/j.marpetgeo.2012.02.015.
  15. Gunnarsson K., Sand M., Gudlaugsson S.T. Geology and Hydrocarbon Potential of the Jan Mayen Ridge // Norwegian Petroleum Directorate and National Energy Authority, Iceland. 1989. http://www.nea.is/media/olia/gunnarsson89.pdf.
  16. Hamann N.E., Wittaker R.C., Stemmerik L. Geological development of the North-East Greenland Shelf / Eds A.G. Doré, B.A. Vining // Petroleum Geology: North-West Europeand Global Perspectives — Proceedings of the 6th Petroleum Geology Conference: Geological Society, London. 2005. P. 887–902. doi: 10.1144/0060887.
  17. Hinz K., Schlüter H.-U. The North Atlantic — results of geophysical investigations by the Federal Institute of Geosciences and Natural Resources on North Atlantic continental margins // Erdöl-Erdgas-Z. 1978. V. 94. P. 271–280.
  18. Hinz K., Schlüter H.U. Continental margin off East Greenland // Proceedings of the 10th World Petroleum Congress, September 1979, Bucharest, Heyden, London. 1980. V. 2. P. 405–418.
  19. Horsefield S.J., Whitmarsh K.R.B., White R.S., Sibuet J.-C. Crustal structure of the Goban Spur rifted continental margin, Ne Atlantic // Geophysical Journal International. 1994. V. 119. № 1. P. 1–19. doi: 10.1111/j.1365-246X.1994.tb00909.x.
  20. Jansen E., Raymo M.E., Bbum P. et al. Proceedings of the Ocean Drilling Programm, Initial Reports, 1996. V. 162: College Station, TX (Ocean Drilling Program). 182 p. doi: 10.2973/odp.proc.ir.162.1996.
  21. Kodaira S., Mjelde R., Gunnarsson K. et al. Structure of the Jan Mayen microcontinent and implications for its evolution // Geophysical Journal International. 1998. V. 132. № 2. P. 383–400. doi: 10.1046/j.1365-246X.1998.00444.x.
  22. Kvarven T., Mjelde R., Hjelstuenet B.O. et al. Crustal composition of the More Margin and compilation of a conjugate Atlantic margin transect // Tectonophysics. 2015. V. 666. P. 144–157. http://dx.doi.org/10.1016/j.tecto.2015.11.002
  23. Larsen H.C. Geology of the East Greenland Shelf / Ed. A.M. Spencer // Petroleum Geology of the North European Margin. Dordrecht: Springer, 1984. P. 329–339. doi: 10.1007/978-94-009-5626-1_24.
  24. Larsen H.C. The East Greenland Shelf // The Geology of North America. V. L // The Arctic Ocean Region: Geological Society of America. 1990. P. 185–210. doi: 10.1130/DNAG-GNA-L.185.
  25. Larsen L.M., Pedersen A.K., Sørensen E.V. et al. Stratigraphy and age of the Eocene Igtertivâ Formation basalts, alkaline pebbles and sediments of the Kap Dalton Group in the graben at Kap Dalton, East Greenland // Bulletin of the Geological Society of Denmark. 2013.V. 61. P. 1–18. http://hdl.handle.net/1957/42801.
  26. Lundin E., Doré A.G. Mid-Cenozoic post-breakup deformation in the ‘passive’ margins bordering the Norwegian–Greenland Sea // Marine and Petroleum Geology. 2002. V. 19. P. 79–93. doi: 10.1016/S0264-8172(01)00046-0.
  27. Mandler H.A.F., Jokat W. The crustal structure of Central East Greenland: results from combined land-sea seismic refraction experiments // Geophysical Journal International. 1998. V. 135. № 1. P. 63–76. doi: 10.1046/j.1365-246X.1998.00586.x.
  28. Mjelde R., Eckhoff I., Solbakken S. et al. Gravity and S-wave modelling across the Jan Mayen Ridge, North Atlantic; implications for crustal lithology // Mar. Geophys. Res. 2007. V. 28. P. 27–41. doi: 10.1007/s11001-006-9012-3.
  29. Mjelde R., Breivik A. J., Raum T. et al. Magmatic and Tectonic Evolution of the North Atlantic // Journal of the Geological Society. 2008. V. 165. P. 31–42. doi: 10.1144/0016-76492007-018.
  30. Mjelde R., Kvarven T., Faleide J.I., Thybo H. Lower crustal high-velocity bodies along North Atlantic passive margins, and their link to Caledonian suture zone eclogites and Early Cenozoic magmatism // Tectonophysics. 2015. V. 670. P. 16–29. doi: 10.1016/j.tecto.2015.11.021.
  31. Mosar J., Eide E.A., Osmundsen P.T. et al. Greenland-Norway Separation. A Geodynamic Model for the North Atlantic // Norwegian Journal of Geology. 2002. V. 82. P. 281–298.
  32. Olesen O., Ebbing J., Lundin E. et al. An improved tectonic model for the Eocene opening of the Norwegian-Greenland Sea: Use of modern magnetic data. Marine and Petroleum // Geology. 2007. V. 24. № 1. P. 53–66. doi: 10.1016/j.marpetgeo.2006.10.008.
  33. Schlindwein V., Jokat W. Structure and evolution of the continental crust of northern east Greenland from integrated geophysical studies // Journal of Geophysical Research. 1999. V. 104. № B7. P. 15227–15245. doi: 10.1029/1999JB900101.
  34. Scott R.A., Ramsey L.A., Jones S.M. et al. Development of the Jan Mayen microcontinent by linked propagation and retreat of spreading ridges / Eds B.T.G. Wandås, J.P. Nystuen, E. Eide, F. Gradstein // Onshore–Offshore Relationships on the North Atlantic Margin. Norwegian Petroleum Society, Oslo, 2005. P. 69–82.
  35. Skogseid J. Dimensions of the Late Cretaceous-Paleocene Northeast Atlantic rift derived from Cenozoic subsidence // Tectonophysics. 1994. V. 240. № 1–4. P. 225–247. doi: 10.1016/0040-1951(94)90274-7.
  36. Smith W.H.F., Sandwell D.T. Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings // Science. 1997. V. 277. № 5334. P. 1956–1962. doi: 10.1126/science.277.5334.1956.
  37. Talwani M., Eldholm O. Evolution of the Norwegian-Greenland Sea // GSA Bulletin. 1977. V. 88. № 7. P. 969–999. doi: 10.1130/0016-7606(1977)88<969:EOTNS>2.0.CO;2.
  38. Usenko S.V., Boiko A.N., Prokhorova T.V. Seafloor structure in the North Atlantic region between the Kolbeinsey Ridge and the Jan Mayen Microcontinent // Izvestiya. Atmospheric and Oceanic Physics. 2018. V. 54. № 11. P. 1546–1558. doi: 10.1134/S0001433818110087.
  39. Vanneste K., Uenzelmann-Neben G., Miller H. Seismic evidence for long-term history of glaciation on central East Greenland shelf south of Scoresby Sund // Geo-Marine Letters. 1995. V. 15. P. 63–70. doi: 10.1007/BF01275408.
  40. Vogt P.R., Johnson G.L., Kristjansson L. Morphology and magnetic anomalies north of Iceland // Journal of Geophysics. 1980. V. 47. P. 67–80.
  41. Weigel W., Fluh E.R., Miller H. et al. Investigations of the East Greenland continental margin between 70° and 72° N by deep seismic sounding and gravity studies // Mar. Geophys. Res. 1995. V. 17. P. 167–199.
  42. Whitmarsh R.B., Miles P.R., Mauffret A. The ocean-continent boundary off the western continental margin of Iberia—I. Crustal structure at 40°30°N // Geophysical Journal International. 1990. V. 103. № 2. P. 509–531. doi: 10.1111/j.1365-246X.1990.tb01788.x.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Overview map of the research area. Bathymetric base SRTM30.v.4 [Becker et al., 2009].

Download (272KB)
3. Fig. 2. A combined model of the earth's crust of East Greenland and the Jan Mayen microcontinent, according to [Weigel et al., 1995; Kodaira et al., 1998] as amended.

Download (244KB)
4. Fig. 3. Seismostratigraphic sections of the East Greenland continental margin by profiles.

Download (150KB)
5. Fig. 4. Seismic sections through the Kolbeynsey Ridge.

Download (303KB)
6. Fig. 5. Research results.

Download (257KB)
7. Fig. 6. Reconstruction of the discharge in the Jan Mayen Depression according to profile V2803 (1) of single-channel seismic profiling (http://www.geomapapp.org/).

Download (208KB)

Copyright (c) 2019 Russian academy of sciences