Epithermal Ag‒Au mineralization of the Televeem volcanic uplift (Central Chukotka)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article considers the geological, mineralogical and geochemical features of the Au–Ag epithermal mineralization of the Televeem volcanic uplift (VU), which complicates the Upper Pykarvaamsky volcanotectonic depression (VTD), the Central Chukchi sector of the Okhotsk-Chukchi volcanic belt (OCHVB). The structure of the ore occurrence is due to its localization within the eponymous VU. The main vein zone (MVZ) of the Televeem ore occurrence, up to 500 m wide, stretches in the meridional direction for 2.5 km. Along the stretch of the MVZ, the kulis-shaped converging quartz-adular veins are successively replaced by zones of fine veining and breccation in secondary quartzites and gossan. The gold content in these formations varies from 1.4 to 17.3 g/t, silver – from 7.6 to 144.6 g/t. Breccia, frame-plate, geode and fine-veined textures are widely developed in the ores. The main ore minerals are pyrite, arsenopyrite, acanthite, freibergite-tetrahedrite, stephanite, polybasite, low-grade native gold (249–532‰), titanite. The amount of ore minerals in veins usually does not exceed 0.5%, in rare cases it reaches 3%. According to mineralogical data, the ore occurrence can be classified as weakly or moderately eroded. Weak erudition suggests a high probability of detecting ore bodies that do not come to the surface.

Full Text

Restricted Access

About the authors

A. V. Volkov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Author for correspondence.
Email: tma2105@mail.ru
Russian Federation, Staromonetny lane, 35, Moscow, 119017

N. E. Savva

Shilo Northeast Interdisciplinary Research Institute, FEB RAS

Email: tma2105@mail.ru
Russian Federation, Portovaya str., 16, Magadan, 685000

A. G. Pilitsyn

Institute of Mineralogy, Geochemistry and Crystal Chemistry of Rare Elements

Email: tma2105@mail.ru
Russian Federation, Veresaeva str., 15, Moscow, 121357

A. V. Grigorieva

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Email: tma2105@mail.ru
Russian Federation, Staromonetny lane, 35, Moscow, 119017

A. V. Efimov

Terra-Invest LLC

Email: tma2105@mail.ru
Russian Federation, village Krivtsovo, 3a, Solnechnogorsk, Moscow region, 141554

A. L. Galyamov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Email: tma2105@mail.ru
Russian Federation, Staromonetny lane, 35, Moscow, 119017

References

  1. Бортников Н.С., Волков А.В., Савва Н.Е., Прокофьев В.Ю., Колова Е.Е., Доломанова-Тополь А.А., Галямов А.Л., Мурашов К.Ю. Эпитермальные Au-Ag-Se-Te месторождения Чукотки (арктическая зона России): металлогения, минеральные парагенезисы, флюидный режим // Геология и геофизика. 2022. Т. 63. № 4. С. 541–568. doi: 10.15372/gig2021169
  2. Волков А.В., Гончаров В.И., Сидоров А.А. Месторождения золота и серебра Чукотки. Магадан: СВКНИИ ДВО РАН, 2006. 220 с.
  3. Волков А.В., Прокофьев В.Ю., Савва Н.Е., Сидоров А.А., Бянкин М.А., Уютнов К.В., Колова Е.Е. Рудообразование на Au–Ag месторождении Купол, по данным изучения флюидных включений (Северо-Восток России) // Геология рудн. месторождений. 2012. Т. 54. № 4. С. 350–359.
  4. Волков А.В., Савва Н.Е., Колова Е.Е., Прокофьев В.Ю., Мурашов К.Ю. Au–Ag эпитермальное месторождение Двойное (Чукотка) // Геология рудн. месторождений. 2018. Т. 60. № 6. С. 590–609.
  5. Волков А.В., Прокофьев В.Ю., Винокуров С.Ф., Мурашов К.Ю., Андреева О.В., Киселева Г.Д., Вольфсон А.А., Сидорова Н.В. Эпитермальное Au‒Ag месторождение Валунистое (Восточная Чукотка, Россия) геологическое строение, минералого-геохимические особенности и условия рудообразования // Геология рудн. месторождений. 2020. Т. 62. № 2. C. 107–133. doi: 10.31857/S0016777020020070
  6. Государственная геологическая карта Российской Федерации. Масштаб 1:1 000 000 (третье поколение). Серия Чукотская. Лист Q-60 – Анадырь. СПб.: Картографическая фабрика ВСЕГЕИ, 2016.
  7. Исаева Е.П., Звизда Т.В., Ушакова Д.Д. и др. Государственная геологическая карта Российской Федерации. Масштаб 1:1 000 000 (третье поколение). Серия Чукотская. Лист Q-60 – Анадырь. Объяснительная записка. СПб.: Картографическая фабрика ВСЕГЕИ, 2016. 360 с.
  8. Савва Н.Е. Минералогия серебра Северо-Востока России. М.: Триумф, 2018. 544 с.
  9. Сидоров А.А. Золотосеребряная формация Восточно-Азиатских вулканогенных поясов. Магадан, 1978. 368 с.
  10. Simmons F.A., White N.C., John D.A. Geological Characteristics of Epithermal Precious and Base Metal Deposits // Economic Geology 100th Anniversary Volume. 2005. P. 485–522.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The location of the Televeem ore field in the regional structures of Central Chukotka, based on [State Geological Map…, 2016]. 1–13 – formations: 1 – Quaternary deposits, 2 – rhyolites, 3 – dacites, 4 – andesites, 5 – basalts, 6 – tuffs, 7 – sandstones, 8 – siltstones and argillites, 9 – metamorphic rocks, 10 – granosyenites, 11 – granites, 12 – diorites, 13 – gabbro; 14, 15 – gold-silver (14) and tin-ore (15) occurrences.

Download (692KB)
3. Fig. 2. Geological map of the Televeem ore field, compiled based on materials (Cherepanova I.Yu., 2013f)2. 1 - channel pebbles with gravel, boulders, sand, loam and peat (up to 2 m); 2 - alluvial pebbles with gravel, boulders, sand, loam and peat (up to 3 m); 3 - Neopleistocene‒Holocene, alluvial-proluvial blocks, crushed stone with an admixture of sand and loam, deluvial-solifluction (ds) sandy loams, loams with gruss and crushed stone (1–7 m); 4 - the fourth stage, the Iskateni horizon, fluvioglacial pebbles, gravel, sand (3-5, rarely up to 10 m); 5 - the second stage, glacial boulders with boulders, rubble, pebbles, sand and loam, fluvioglacial (f) pebbles with sand and rare boulders (4-5, rarely up to 20 m); 6, 7 - Ichuveemsky complex of lamprophyres, syenite-porphyry, rhyolite hypabyssal: 6 - small andesite stocks, 7 - basaltic andesite dikes; 8 - Gaimaninsky andesite-rhyodacitic complex, rhyolite and rhyodacite bodies, and their clastolaves; 9, 10 - Gaiman Formation, middle subformation: 9 - upper member, ignimbrites of rhyolite, rhyodacite, trachyrhyodacite, trachydacite with horizons of latite, andesite, dacite (more than 650 m), 10 - lower member, tuffs, ignimbrite of rhyolite, rhyodacite, less often lava, horizons of tuffite (300-550 m); 11, 12 - areal bodies: 11 - fully developed secondary quartzites, 12 - fields of development of argillizite and ferrugination; 13, 14 - veins: 13 - quartz, quartz-adularia (q-ad), quartz-sulfide (q-s); 14 - collapses of quartz and quartz-adularia (q-ad) veins; 15 – points of mineralization with gold grades (1 – 1–10 g/t, 2 – 10–405 g/t); 16 – geological boundaries between geological formations of different ages (a – reliable, b – inferred); 17 – zones of intense fracturing (a – reliable, b – hidden under Quaternary formations); 18 – geochemical anomalies of gold with grades (1 – 14.5–36.0 mg/t, 2 – 36.0–3600.0 mg/t); 19 – elements of fluidity and layering; 20 – predecessor trenches and their numbers; 21 – trenches mined in 2012 and their numbers; 22 – trenches mined in 2013 and their numbers; 23 – wells drilled in 2013 and their numbers; 24 – exploration areas.

Download (1MB)
4. Fig. 3. Textures of the Telaway ore occurrence. a – fine-veined texture of secondary quartzites; b – colloform texture of chalcedony-like quartz; c – adularia-quartz vein with druse-like and framework-plate textures; d – quartz breccia (quartz cements silicified fragments of ignimbrites, rhyolites, tuffs and tuffaceous siltstones).

Download (1MB)
5. Fig. 4. Photographs of ore mineralization in secondary quartzites (polished sections). a, b – arsenopyrite-marcasite mineral aggregates in quartz; c – without analyzer – anatase (?) crystals intergrown with pyrite (light quartz); g – pyrite intergrown with anatase (?), in reflected light; d – crystal of transparent titanite (sphene), with high magnification; e – framboidal pyrite in quartz cement of breccia; g – intergrowth of arsenopyrite with hypidiomorphic-granular pyrite.

Download (1MB)
6. Fig. 5. Forms of occurrence of ore minerals in a quartz-adularia vein. a–c – silver and copper sulfoantimonites in a quartz-feldspar matrix; g, g1, d – zonal arsenopyrite with inclusions of galena and acanthite; e, e1 – pyrite (Py) with multiple inclusions of acanthite enriched in selenium (Se–Ac); g – intergrowth of pyrite with sulfosalts. Image in reflected electrons.

Download (985KB)
7. Fig. 6. Ore minerals of quartz-adularia veins of the Telaway ore occurrence. a – Ag mineral segregations (black in transmitted light) confined to a plate-like quartz aggregate; b – complex intergrowths of pyrite, arsenopyrite and polybasite; c – acanthite rim around a polybasite segregation; g – euhedral crystal of stephanite (Stef–Ag5SbS4); d, f – acanthite (Ac–Ag2S); g – intergrowth of acanthite with low-fineness gold (Au‒Ag) Uytenbogaardtite (Utb–Ag3AuS2); h – stephanite crystal replaced by Sb,Ag,Fe sulfates (Sb–Ag-jarosite); i – thin intergrowths of low-fineness gold with acanthite in quartz.

Download (832KB)

Copyright (c) 2024 Russian Academy of Sciences