Eruptive products from the Bezymianny volcano eruption on April 7, 2023

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

We have obtained the first data on the chemical composition of the eruptive materials from the explosive eruption of Bezymianny volcano on April 7, 2023. Our unique collection includes freshly sampled pumice lapilli from the eruption and juvenile blocks from pyroclastic flows. We have identified interesting patterns in both macro components and specific chalcophile elements, such as copper. The rocks we studied belong to medium-K two-pyroxene basaltic andesite (55.5‒57 wt. % SiO2), with mafic enclaves characterized by a slightly more primitive composition (53.7 wt. % SiO2). According to mineral geothermometry data, the phenocrysts of basaltic andesite crystallized at temperatures in the range from 940 to 960°C, while the formation of phenocryst rims and microlites occurred at 980°C, which corresponds to conditions immediately before the eruption. The composition of volcanic glass allows us to estimate the pressure at which the magma reached the last equilibrium with crystallizing phases before eruption (0.5‒0.6 kbar). Based on these findings, we have formulated hypotheses about the potential evolution of the shallow magma chamber of Bezymianny volcano during the period from 2017 to 2023.

Texto integral

Acesso é fechado

Sobre autores

V. Davydova

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: vestadav@gmail.com

Geological Faculty

Rússia, Leninskie Gory, 1, Moscow, 119991

R. Kuznetsov

Institute of Volcanology and Seismology FEB RAS

Email: vestadav@gmail.com
Rússia, Piipa bulvar, 9, Petropavlovsk-Kamchatsky, 683006

O. Dirksen

Institute of Volcanology and Seismology FEB RAS

Email: vestadav@gmail.com
Rússia, Piipa bulvar, 9, Petropavlovsk-Kamchatsky, 683006

D. Melnikov

Institute of Volcanology and Seismology FEB RAS

Email: vestadav@gmail.com
Rússia, Piipa bulvar, 9, Petropavlovsk-Kamchatsky, 683006

A. Ermolinsky

Lomonosov Moscow State University

Email: vestadav@gmail.com

Geological Faculty

Rússia, Leninskie Gory, 1, Moscow, 119991

V. Yapaskurt

Lomonosov Moscow State University

Email: vestadav@gmail.com

Geological Faculty

Rússia, Leninskie Gory, 1, Moscow, 119991

Bibliografia

  1. Гирина О.А., Горбач Н.В., Давыдова В.О., Мельников Д.В., Маневич Т.М., Маневич А.Г., Демянчук Ю.В. Эксплозивное извержение вулкана Безымянный 15 марта 2019 г. и его продукты // Вулканология и сейсмология. 2020. № 6. С. 50‒66.
  2. Гирина О.А., Лупян Е.А, Маневич А.Г., Мельников Д.В., Нуждаев А.А., Сорокин А.А., Романова И.М., Крамарева Л.С., Уваров И.А., Королев С.П., Демянчук Ю.В., Цветков В.А. Дистанционный мониторинг эксплозивных извержений вулкана Безымянный в 2023 г. // Материалы 21-й Международной конференции “Современные проблемы дистанционного зондирования земли из космоса”, XXI.G.92, Москва, 13–17 ноября 2023 г. М.: ИКИ РАН, 2023.
  3. Давыдова В.О., Щербаков В.Д., Плечов П.Ю. Оценки времени смешения магм в системе вулкана Безымянный (Камчатка) по данным диффузионной хронометрии // Вестник МГУ. Серия 4. Геология. 2018. №. 4. С. 52‒58.
  4. Давыдова В.О., Щербаков В.Д., Плечов П.Ю., Перепелов А.Б. Характеристика мафических включений в продуктах современных извержений вулкана Безымянный 2006–2012 гг. // Петрология. 2017. Т. 25. № 6. С. 609–634.
  5. Малышев А.И. Жизнь вулкана. Екатеринбург: Изд-во УрО РАН, 2000. 260 с.
  6. Мельников Д.В., Жижин М.Н., Трифонов Г.М., Пойда А.А. Динамика извержения вулкана Сноу (о. Чирпой, Курильские острова) в 2012–2017 гг.: результаты применения алгоритма VIIRS Nightfire // Современные проблемы дистанционного зондирования Земли из космоса. 2018. Т. 15. № 3. С. 69‒79.
  7. Сенюков С.Л., Нуждина И.Н., Дрознина С.Я., Кожевникова Т.Ю., Назарова З.А., Соболевская О.В. Особенности сейсмичности вулкана Безымянный в 2022–2023 гг. // Труды Девятой Всероссийской научно-технической конференции с международным участием 24–30 сентября 2023 г. “Проблемы комплексного геофизического мониторинга сейсмоактивных регионов”. Петропавловск-Камчатский, 2023. С. 183–187.
  8. Albarede F. How deep do common basaltic magmas form and differentiate? // J. of Geophys. Res.: Solid Earth. 1992. V. 97. № B7. P. 10997‒11009.
  9. Coppola D., Laiolo M., Massimetti F., Hainzl S., Shevchenko A., Mania R., Shapiro N., Walter T.R. Thermal remote sensing reveals communication between volcanoes of the Klyuchevskoy Volcanic Group // Scientific Reports. 2021. V. 11. № 1. P. 13090.
  10. Davydova V.O., Shcherbakov V.D., Plechov P.Y., Koulakov I.Y. Petrological evidence of rapid evolution of the magma plumbing system of Bezymianny volcano in Kamchatka before the December 20th, 2017 eruption // J. Volcanol. Geotherm. Res. 2022. V. 421. P. 107422.
  11. Davydova V.O., Shcherbakov V.D., Plechov P.Y., Yapaskurt V.O., Scherbakov Yu.D., Perepelov A.B, Brianskii N.V, Antipin V.S. Copper redistribution from shallow oxidized magmas to mafic enclaves. Insight from anomalously Cu-enriched enclaves from Bezymianny volcano, Kamchatka // Lithos. 2024. https://dx.doi.org/10.2139/ssrn.4661224
  12. Elvidge C., Zhizhin M., Hsu F-C., Baugh K. VIIRS Nightfire: Satellite Pyrometry at Night // Remote Sensing. 2013. V. 5. № 9. P. 4423‒4449.
  13. Girina O.A. Chronology of Bezymianny volcano activity, 1956–2010 //J. of Volcanol. Geotherm. Res. 2013. V. 263. P. 22‒41.
  14. Jarosewich E., Nelen J.A., Norberg J.A. Reference samples for electron microprobe analysis // Geostandards Newsletter. 1980. V. 4. № 1. P. 43–47.
  15. Koulakov I., Plechov P., Mania R., Walter T.R., Smirnov S.Z., Abkadyrov I., Jakovlev A., Davydova V., Senyukov S., Bushenkova N., Novgorodova A., Stupina T., Droznina S.Ya. Anatomy of the Bezymianny volcano merely before an explosive eruption on 20.12.2017 // Scientific reports. 2021. V. 11. № 1. P. 1–12.
  16. Mueller S., Scheu B., Kueppers U., Spieler., Richard D., Dingwell D. The porosity of pyroclasts as an indicator of volcanic explosivity // J. of Volcanol. Geotherm. Res. 2011. V. 203. P. 168‒174.
  17. Plechov P., Blundy J., Nekrylov N., Melekhova E., Shcherbakov V., Tikhonova M.S. Petrology and volatile content of magmas erupted from Tolbachik Volcano, Kamchatka, 2012–2013 // J. of Volcanol. Geotherm. Res. 2015. V. 307. P. 182‒199.
  18. Putirka K.D. Thermometers and barometers for volcanic systems // Rev. Mineral. Geochem. 2008. V. 69. № 1. P. 61–120.
  19. Shcherbakov V.D., Plechov P.Y., Izbekov P.E., Shipman J.S. Plagioclase zoning as an indicator of magma processes at Bezymianny Volcano, Kamchatka // Contrib. Mineral. Petrol. 2011. V. 162. P. 83–99.
  20. Trifonov G., Zhizhin M., Melnikov D., Poyda A. VIIRS Nightfire remote sensing volcanoes // Procedia computer science. 2017. V. 119. P. 307‒314.
  21. Turner S.J., Izbekov P.E., Langmuir C. The magma plumbing system of Bezymianny Volcano: Insights from a 54 year time series of trace element whole-rock geochemistry and amphibole compositions // J. Volcanol. Geothermal. Res. 2013. V. 263. P. 108–121.
  22. Zhizhin M., Matveev A., Ghosh T., Hsu F-C., Howells M., Elvidge C. Measuring Gas Flaring in Russia with Multispectral VIIRS Nightfire // Remote Sensing. 2021. V. 13. № 16. P. 3078.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Deposits from the explosive eruption of Bezymyanny volcano on April 7, 2023. a – pyroclastic deposits on the slopes of Bezymyanny volcano after the eruption. Image from the Sentinel-2 satellite on April 29, 2023 (https://www.sentinel-hub.com/). Asterisks mark sampling locations in April (green) and August (yellow) 2023; b – the interior of the juvenile block, August 2023; c – the surface of the pyroclastic flow, August 2023.

Baixar (812KB)
3. Fig. 2. Ashfall during the eruption on April 7, 2023 The falling pumiceous lapilli are clearly visible. They also stand out clearly on the snow covered with thin ash (a). Lapilli on the snow near the Ambon rock the day after the eruption (04/08/2023, photo by I.A. Nuzhdaev) (b). Pumiceous lapilli of the tephra of the Bezymyanny volcano immediately after selection (photo by V.I. Frolov) (c).

Baixar (1MB)
4. Fig. 3. Gross composition of the products of the eruption of April 7, 2023 in comparison with the compositions of the products of other eruptions of the modern eruptive cycle (the compositions are given according to the works [Turner et al., 2013; Girina et al., 2019; Davydova et al., 2022, 2024]).

Baixar (269KB)
5. Fig. 4. Variations in copper content in eruptive products of Bezymyanny volcano. See Fig. 3 for legend.

Baixar (141KB)
6. Fig. 5. General view of eruptive products, reflected electron images (a, b) and the bulk of the studied samples, reflected electron images (c, d). a – sample ODV-2 (lapilli); b – sample VK2302 (inner part of a large juvenile block from a pyroclastic flow); c – sample ODV-2 (lapilli); d – sample VK2302 (inner part of a large juvenile block).

Baixar (642KB)
7. Fig. 6. Composition of volcanic glasses of the studied samples. See Fig. 3 for legend. Grey circles indicate average compositions of glasses from the 2006–2017 eruptions [Davydova et al., 2022], in the absence of an error bar, its value is less than the size of the symbol.

Baixar (503KB)
8. Fig. 7. Graph of thermal emission distribution at Bezymyanny volcano for the period 2012–2023, according to VIIRS Nightfire satellite monitoring data. Red line – cumulative radiated energy, in J. Auxiliary axis – logarithm of radiated volcanic power, in MW. Black vertical lines – dates of volcanic eruption. Green areas – periods of open volcanic system.

Baixar (269KB)
9. Fig. 8. Comparison of the distribution graph of thermal emission at Bezymyanny volcano for the period 2012–2023, according to VIIRS Nightfire satellite monitoring data, with previously published data from the MIROVA algorithm [Coppola et al., 2021] on the distribution of thermal emission before the break in explosive activity in the period 2012–2016. Black vertical lines are the dates of the volcano’s eruption.

Baixar (374KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024