Identifying zones of possible earthquake focus in areas of newest tectogenesis based on geological-geomorphological factors and fuzzy logic tools (on the example of the Greater Caucasus)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

16 morphometric relief parameters have been established, the positive anomalies of which correspond to seismically active areas in the Greater Caucasus region. Analysis of the four most informative parameters using the γ-operator in fuzzy logic has made it possible to create a scheme for a neotectonic activity index. This index was used together with the results of computer geodynamic modeling to identify zones of potential earthquake epicenters. This approach does not require detailed information on modern and past seismic activity, and can therefore be applied to areas that are seismologically understudied. In addition, a relationship between modern deformation and seismic activity is shown, as well as the possibilities of using the technique developed by Yu.V. Nechaev [Nechaev, 2010] to identify active fault zones.

Full Text

Restricted Access

About the authors

A. L. Sobisevich

Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: alekssencov@yandex.ru
Russian Federation, Bolshaya Gruzinskaya str., 10, bld. 1, Moscow, 123242

G. M. Steblov

Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences; Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences

Email: alekssencov@yandex.ru
Russian Federation, Bolshaya Gruzinskaya str., 10, bld. 1, Moscow, 123242; Profsoyuznaya str., 84/32, Moscow, 117997

A. O. Agibalov

Moscow State University; Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: alekssencov@yandex.ru

Faculty of Geology, Moscow State University

Russian Federation, Leninskie Gory, 1, Moscow, 119991; Bolshaya Gruzinskaya str., 10, bld. 1, Moscow, 123242

I. M. Aleshin

Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: alekssencov@yandex.ru
Russian Federation, Bolshaya Gruzinskaya str., 10, bld. 1, Moscow, 123242

G. R. Balashov

Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: alekssencov@yandex.ru
Russian Federation, Bolshaya Gruzinskaya str., 10, bld. 1, Moscow, 123242

A. D. Kondratov

Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: alekssencov@yandex.ru
Russian Federation, Bolshaya Gruzinskaya str., 10, bld. 1, Moscow, 123242

V. M. Makeev

Sergeev Institute of Environmental Geoscience Russian Academy of Science

Email: alekssencov@yandex.ru
Russian Federation, Ulansky lane, 13, bld. 2, Moscow, 101000

V. P. Perederin

Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: alekssencov@yandex.ru
Russian Federation, Bolshaya Gruzinskaya str., 10, bld. 1, Moscow, 123242

F. V. Perederin

Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: alekssencov@yandex.ru
Russian Federation, Bolshaya Gruzinskaya str., 10, bld. 1, Moscow, 123242

N. K. Rosenberg

Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: alekssencov@yandex.ru
Russian Federation, Bolshaya Gruzinskaya str., 10, bld. 1, Moscow, 123242

A. A. Sentsov

Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Author for correspondence.
Email: alekssencov@yandex.ru
Russian Federation, Bolshaya Gruzinskaya str., 10, bld. 1, Moscow, 123242

K. I. Kholodkov

Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: alekssencov@yandex.ru
Russian Federation, Bolshaya Gruzinskaya str., 10, bld. 1, Moscow, 123242

K. V. Fadeeva

Moscow State University

Email: alekssencov@yandex.ru

Faculty of Geology

Russian Federation, Leninskie Gory, 1, Moscow, 119991

References

  1. База данных скоростей ГАО РАН. URL: https://www.gaoran.ru/russian/database/station/databasev_rus.html. Дата обращения 24.04.2024
  2. Гвишиани А.Д., Дзебоев Б.А., Агаян С.М., Белов И.О., Николова Ю.И. Нечеткие множества высокосейсмичных пересечений морфоструктурных линеаментов на Кавказе и в регионе Алтай-Саяны Прибайкалье // Вулканология и сейсмология. 2021. № 2. С. 3–10.
  3. Гончаров М.А., Талицкий В.Г., Фролова Н.С. Введение в тектонофизику / Отв. ред. Н.В. Короновский. М.: КДУ, 2005. 496 с.
  4. Делоне Б.Н. О пустоте сферы // Изв. АН СССР. ОМЕН. 1934. № 4. С. 793–800.
  5. Демидова Г.Л., Лукичев Д.В. Регуляторы на основе нечеткой логики в системах управления техническими объектами. СПб.: Университет ИТМО, 2017. 81 с.
  6. Дзебоев Б.А., Гвишиани А.Д., Белов И.О., Татаринов В.Н., Агаян С.М., Барыкина Ю.В. Распознавание мест возможного возникновения сильных землетрясений на основе алгоритма с единственным чистым классом обучения. I. Алтай‒Саяны‒Прибайкалье. М ≥6.0 // Физика Земли. 2019. № 4. С. 33–47.
  7. Короновский Н.В. Геология России и сопредельных территорий. М.: Академия, 2011. 240 с.
  8. Костенко Н.П. Геоморфология. М.: МГУ, 1999. 379 с.
  9. Лукк А.А., Шевченко В.И. Сейсмичность, тектоника и GPS-геодинамика Кавказа // Физика Земли. 2019. № 4. С. 99–123.
  10. Милюков В.К., Миронов А.П., Овсюченко А.Н., Горбатиков А.В., Стеблов Г.М., Корженков А.М., Дробышев В.Н., Хубаев Х.М., Агибалов А.О., Сенцов А.А., Dogan U., Ergintav S. Современные тектонические движения Западного Кавказа и Предкавказья по ГНСС наблюдениям // Геотектоника. 2022. № 1. С. 51–67.
  11. Миронов А.П., Милюков В.К., Стеблов Г.М., Дробышев В.Н., Кусраев А.Г., Хубаев Х.М. Деформации земной коры в осетинском регионе Большого Кавказа по данным ГНСС-измерений // Геофизические процессы и биосфера. 2021. T. 20. № 4. С. 122–137.
  12. Нетребин П.Б. Морфометрический анализ рельефа Большого Кавказа / Дисс. … канд. географ. наук. Краснодар, 2012. 227 с.
  13. Нечаев Ю.В. Линеаменты и тектоническая раздробленность: дистанционное изучение внутреннего строения литосферы / Под ред. акад. А.О. Глико. М.: ИФЗ РАН, 2010. 215 с.
  14. Ребецкий Ю.Л., Сим Л.А., Маринин А.В. От зеркал скольжения к тектоническим напряжениям. Методики и алгоритмы. М.: ГЕОС, 2017. 234 с.
  15. Руководство по безопасности при использовании атомной энергии РБ-19-18. URL: https://docs.cntd.ru/document/556827973?ysclid=lspa4wak1l9308334. Дата обращения 17.02.2024а
  16. Руководство пользователя “Analysis Package Reservoir Modelling System (RMS)”. URL: www.geodisaster.ru/index.php?page=uchebnye-posobiya-2. Дата обращения: 20.02.2024б
  17. Сейсмический каталог Международного сейсмологического центра (ISC). URL: https://isc.ac.uk/iscbulletin/search/bulletin/. Дата обращения 20.04.2024
  18. Сенцов А.А. Сейсмотектоника опасных областей Восточно-Европейской платформы / Дисс. … канд. геол.-мин. наук. М., 2022. 116 с.
  19. Симонов Ю.Г. Объяснительная морфометрия рельефа. М.: ГЕОС, 1999. 250 с.
  20. Справочник по инструментам ArcGis Pro. URL: https://pro.arcgis.com/ru/pro-app/latest/tool-reference. Дата обращения 20.04.2024
  21. Стеблов Г.М., Агибалов А.О., Макеев В.М., Передерин В.П., Передерин Ф.В., Сенцов А.А. К проблеме оценки максимально возможных магнитуд землетрясений острова Сахалин различными методами // Вопросы инженерной сейсмологии. 2023. Т. 50. № 4. С. 25–35.
  22. Стеблов Г.М., Агибалов А.О., Мельник Г.Э., Передерин В.П., Передерин Ф.В., Сенцов А.А. Анализ современных движений и деформаций земной коры по данным ГНСС // Физика Земли. 2022. № 4. С. 19–29.
  23. Трегуб А.И. Морфоструктура Онежского полуострова и дна прилегающей акватории Белого моря на основе статистических моделей рельефа и морфографического анализа // Вестник ВГУ. Серия: Геология. 2010. № 2. С. 59–64.
  24. Философов В.П. Краткое руководство по морфометрическому методу поисков тектонических структур / Под ред. А.А. Корженевского. Саратов: Изд-во Саратовского университета, 1960. 91 с.
  25. Цифровая модель рельефа. URL: http://www2.jpl.nasa.gov/srtm/. Дата обращения 22.04.2024
  26. Abdulrazzaq Z.T., Agbasi O.E., Aziz N.A., Sunday E.E. Identification of potential groundwater locations using geophysical data and fuzzy gamma operator model in Imo, Southeastern Nigeria // Applied Water Science. 2020. V. 10. № 188.
  27. Balamurugan G., Ramesh V., Touthang M. Landslide susceptibility zonation mapping using frequency ratio and fuzzy gamma operator models in part of NH-39, Manipur, India // Nat Hazards. 2016. V. 84. P. 465–488.
  28. Lehner B., Grill G. Global River hydrography and network routing: baseline data and new approaches to study the world’s large river systems // Hydrological Processes. 2013. № 27(15). P. 2171–2186.
  29. Sema H.V., Guru B., Veerappan R. Fuzzy gamma operator model for preparing landslide susceptibility zonation mapping in parts of Kohima Town, Nagaland, India // Modeling Earth Systems and Environment. 2017. V. 3. P. 499–514.
  30. Tanaka H., Asai K. Fuzzy linear programming problems with fuzzy numbers // Fuzzy Sets and Systems. 1984. V. 13. № 1. P. 1–10.
  31. Tangestani M.H. Landslide susceptibility mapping using the fuzzy gamma approach in a GIS, Kakan catchment area, southwest Iran // Australian Journal of Earth Sciences. 2004. V. 51. № 1. P. 439–450.
  32. Wells D.L., Coppersmith K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement // Bulletin of the seismological Society of America. 1994. V. 84. № 4. P. 974–1002.
  33. Zelenin E.A, Bachmanov D.M., Garipova S.T., Trifonov V.G., Kozhurin A.I. The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset // Earth System Science Data. 2022. V. 14. P. 4489–4503.
  34. Zimmerman H.J. Fuzzy set theory and it applications. Boston, Dordrecht, London: Kluwer Academic Publishers, 1996. 435 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the main structures of the Greater Caucasus, after [Koronovsky, 2011]. 1 – Labino-Malkinskaya zone; 2 – zone of the Front Range, composed of Paleozoic; 3 – metamorphic Paleozoic rocks of the Main Range; 4 – northern gently folded wing, composed of Mesozoic; 5 – shale strata of the Lower – Middle Jurassic; 6 – Upper Jurassic-Cretaceous, in places flysch, composed of moderately folded volcanogenic-sedimentary deposits of the Mesozoic; 7 – zone composed of terrigenous Lias and volcanogenic Bajocian; 8 – suture and thrust zones, composed of highly dislocated Mesozoic and Cenozoic; 9 – Cenozoic deposits of periclinal troughs; 10 – epicenters of modern earthquakes; 11 – epicenters of modern earthquakes with a magnitude ≥5.5. The numbers indicate the main structures: 1 – Labino-Malkinskaya zone; 2 – Foremost Ridge zone; 3 – Paleozoic structure of the Main Ridge; 4 – Svaneti anticlinorium, composed of Silurian – Triassic; 5 – Gagro-Dzhava zone; 6 – Kakheti-Lechkhumi suture and thrust zones; 7 – Goytkh anticlinorium; 8 – Novorossiysk-Sochi anticlinorium; 9 – Apsheron-Kobystan foredeep; 10 – structures of the Main (axial) Ridge; 11 – structures of the Lateral Ridge; 12 – limestone Dagestan; 13 – Chiauro-Dibrar synclinorium.

Download (479KB)
3. Fig. 2. Schemes of morphometric parameters of the Greater Caucasus relief used as initial data for the analysis by the fuzzy logic γ-operator. I — scheme of the difference between the 2nd and 3rd order base surfaces, II — scheme of the difference between the 4th and 5th order base surfaces, III — scheme of the dispersion of the depth of vertical dissection of the relief, IV — scheme of the asymmetry of the relief heights. 1 — epicenters of earthquakes with M ≥5.5 [Seismic…, 2024]; 2 — boundaries of the Greater Caucasus, according to [Koronovsky, 2011]; 3 — cities.

Download (378KB)
4. Fig. 3. ROC curves (blue lines) constructed for the neotectonic activity index (I) and the epicenters of the Greater Caucasus earthquakes. I — for all earthquakes; II — for earthquakes with M ≥5.5; III — for all earthquakes taking into account the filter I ≥0.6; IV — for earthquakes with M ≥5.5 taking into account the filter I ≥0.6. Green lines — the boundaries of the random distribution.

Download (97KB)
5. Fig. 4. Schemes of modern areal deformation (ε) (I) and the location of tectonic fragmentation degree profiles (II). 1 — GNSS points, according to [Base…, 2024; Milyukov et al., 2022; Mironov et al., 2021]; 2 — boundaries of the Greater Caucasus, according to [Koronovsky, 2011]; 3 — cities; 4 — “weak” zones; 5 — lines of tectonic fragmentation degree profiles; 6 — active faults, according to [Zelenin et al., 2022].

Download (633KB)
6. Fig. 5. Schemes of the neotectonic activity index obtained from the analysis by the fuzzy logic γ-operator (I) and the Greater Caucasus ETS zones (II). 1 — epicenters of earthquakes with M <5.5 [Seismic…, 2024]; 2 — epicenters of earthquakes with M ≥5.5 [Seismic…, 2024]; 3 — areas of localization of maximum compressive stresses, identified based on the results of computer geodynamic modeling; 4 — active faults, according to [Zelenin et al., 2022]; 5 — ETS zones, the numbers of which are shown by arrows. The inset shows the reconstruction of the positions of the main normal stress axes based on the solutions of the focal mechanisms of earthquake foci (lower hemisphere): gray — extension areas, white — compression areas; 1–3 — main normal stress axes: 1 — tension, 2 — intermediate, 3 — compression.

Download (628KB)
7. Fig. 6. Vertical profiles of the tectonic fragmentation field of the Greater Caucasus (profile lines are shown in Fig. 3, II). 1 — hypocenters of earthquakes with M ≥5.5 [Seismic…, 2024]; 2 — active faults, according to [Zelenin et al., 2022], expressed in the tectonic fragmentation field; 3 — lineaments expressed in the tectonic fragmentation field; 4 — uplifted wing of the fault; 5, 6 — supposed boundaries of convective cells of the first (5) and second (6) ranks; 7 — areas of the most intense uplift, identified by the relief; 8 — subsided wing of the fault.

Download (171KB)

Copyright (c) 2024 Russian Academy of Sciences