Morphology and tectonics of Icelandic rifts western branch

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Iceland is a unique example of a place, where rift zone of Mid-Atlantic Ridge appears onshore. Its morphological and tectonic features considerably differ from typical mid-oceanic ridge rift zones. The morphology and geodynamics of Icelandic rift western branch are formed by Iceland plume thermal influence that generated the North Atlantic Large Igneous Province. Icelandic rift western branch is characterized by ceasing tectonic and magmatic activity. Overlapping with the Eastern Rift Zone it forms rotating block of Hreppar Microplate that leads to tectono-magmatic activity decline northwards. Based on morphometric analysis of normal faults, the relative activity degree of individual parts of volcanic systems was revealed. For some parts, the activity changes in late Quaternary were traced. Obtained inferences demonstrate explicit differences in contemporary tectonic structure and dynamics of the rift zones and volcanic systems within them. For instance, transtensive Reykjanes Rift Zone, the southernmost one, has decreasing eastwards tectono-magmatic activity, which is connected with influence decrease of Reykjanes Ridge adjoining from the south-west. Its gradual southward shifting is observed that is explained by similar southward propagation of the most active Eastern Rift Zone and by the formation of new transtensive zone aggregating contemporary Reykjanes Rift Zone and South-Iceland Seismic Zone. In contrast, the Western Rift Zone develops independently from Reykjanes Rift Zone. It has the largest extension center in the area of Thingvallavatn Lake. In its northern part as within the Central Rift Zone, Holocene tectono-magmatic activity is very faint and is linked to glacioisostatic reactivation of more ancient structures. Revealed structural heterogeneities are traced in rift zone morphology as well. For example, within Western and Central Rift Zones, well-developed shield volcanoes are common. They consist of hyaloclasts predominantly. Within fissure swarms, individual lava shields are observed. In contrast, Reykjanes Rift Zone is characterized by absence of topographically expressed central volcanoes, and within fissure swarms, the chains of volcanic cones are present.

Full Text

Restricted Access

About the authors

V. A. Bogoliubskii

Lomonosov Moscow State University

Author for correspondence.
Email: bogolubskiyv@yandex.ru

The Earth Science Museum; Faculty of Geology

Russian Federation, Leninskiye Gory, 1, Moscow, 119991

E. P. Dubinin

Lomonosov Moscow State University

Email: edubinin08@rambler.ru

The Earth Science Museum; Faculty of Geology; Faculty of Geography

Russian Federation, Leninskiye Gory, 1, Moscow, 119991

A. A. Lukashov

Lomonosov Moscow State University

Email: smoluk@yandex.ru

Faculty of Geography

Russian Federation, Leninskiye Gory, 1, Moscow, 119991

References

  1. Боголюбский В.А., Дубинин Е.П. Строение и динамика эндогенного рельефа трансформной зоны Тьёрнес (Северная Исландия) // Вестник Московского Университета. Серия 5. География. 2023. № 3. С. 152‒167. doi: 10.55959/MSU0579-9414.5.78.3.12
  2. Дубинин Е.П., Грохольский А.Л., Кохан А.В., Свешников А.А. Термическое и реологическое состояние литосферы и особенности структурообразования в рифтовой зоне хребта Рейкьянес (по результатам численного и экспериментального моделирования) // Физика Земли. 2011. № 7. С. 30‒43.
  3. Зарайская Ю.А., Фроль В.В. Сейсмичность хребта Рейкьянес и особенности его морфологии // Вестник Московского Университета. Серия 5. География. 2013. № 4. С. 82‒87.
  4. Кохан А.В. Морфология рифтовых зон ультрамедленного спрединга (хребты Рейкьянес, Книповича и Гаккеля) // Вестник Московского Университета. Серия 5. География. 2013. №2. С. 61‒69.
  5. Кохан А.В., Дубинин Е.П. Особенности морфоструктурной сегментации рифтовой зоны Юго-Восточного Индийского хребта в районах мантийных термических аномалий // Вестник Московского Университета. Серия 5. География. 2017. №6. С. 44‒54.
  6. Кохан А.В., Дубинин Е.П., Грохольский А.Л. Геодинамические особенности структурообразования в спрединговых хребтах Арктики и Полярной Атлантики // Вестник КРАУНЦ. Науки о Земле. 2012. № 1. Вып. 19. С. 59‒77.
  7. Árnadóttir T., Lund B., Jiang W., Geirsson H., Björnsson H., Einarsson P., Sigurdsson T. Glacial re-bound and plate spreading: results from the first countrywide GPS observations in Iceland // Geophys. J. Int. 2009. V. 177. P. 691–716. doi: 10.1111/j.1365-246X.2008.04059.x
  8. Bergerat F., Angelier J. The South Iceland Seismic Zone: tectonic and seismo-tectonic analyses revealing the evolution from rifting to transform motion // J. of Geodynamics. 2000. V. 29. P. 211‒231. doi: 10.1016/S0985-3111(00)87047-3
  9. Brandsdóttir B., Hooft E. E. E., Mjelde R., Murai Y. Origin and evolution of the Kolbeinsey Ridge and Iceland Plateau, N-Atlantic // Geochem. Geophys. Geosyst. 2015. V. 16. P. 1‒16. doi: 10.1002/2014GC005540
  10. Clifton A.E., Paglia C., Jónsdóttir J.F., Eythorsdóttir K., Vogfjörð K. Surface effects of triggered fault slip on Reykjanes Peninsula, SW Iceland // Tectonophysics. 2003. V. 369. P. 145–154. doi: 10.1016/S0040-1951(03)00201-4
  11. DeMets C., Gordon R., Argus D. Geologically current plate motions // Geophys. J. Int. 2010. V. 181. P. 1–80. doi: 10.1111/j.1365-246X.2009.04491.x
  12. Eason D.E., Sinton J.M. Lava shields and fissure eruptions of the Western Volcanic Zone, Iceland: Evidence for magma chambers and crustal interaction // J. of Volcanology and Geothermal Res. 2009. V. 186. P. 331–348. doi: 10.1016/j.jvolgeores.2009.06.009
  13. Einarsson P. Plate boundaries, rifts and transforms in Iceland // Jökull. 2008. V. 58. P. 35‒58.
  14. Escartin J., Cowie P., Searle R., Allerton S., Mitchell N., MacLeod C., Slootweg A. Quantifying tectonic strain and magmatic accretion at a slow-spreading ridge segment, Mid-Atlantic Ridge, 29°N // J. Geophys. Res. 199. V. 104. № B5. P. 10421–10437. doi: 10.1029/1998JB900097
  15. Garcia S., Angelier J., Bergerat F., Homberg C., Dauteuil O. Influence of rift jump and excess loading on the structural evolution of Northern Iceland // Tectonics, American Geophysical Union (AGU). 2008. V. 27. № 1. P. 1006‒1019. doi: 10.1029/2006TC002029
  16. Haimson B.C., Voight B. Crustal stress in Iceland // PAGEOPH. 1977. V. 115. P. 153–190. doi: 10.1007/BF01637102
  17. Hilley G.E., DeLong S., Prentice C., Blisniuk K., Arrowsmith J.R. Morphologic dating of fault scarps using airborne laser swath mapping (ALSM) data // Geophys. Res. Lett. 2010. V. 37. L04301. doi: 10.1029/2009GL042044
  18. Hjartardóttir Á.R., Einarsson P. Tectonic position, structure, and Holocene activity of the Hofsjökull volcanic system, central Iceland // J. of Volcanology and Geothermal Res. 2021. V. 417. 107277. doi: 10.1016/j.jvolgeores.2021.107277
  19. Hjartardóttir Á.R., Einarsson P., Björgvinsdóttir S.G. Fissure swarms and fracture systems within the Western Volcanic Zone, Iceland – Effects of spreading rates // J. of Structural Geology. 2016. V. 91. P. 39‒53. doi: 10.1016/j.jsg.2016.08.007
  20. Howell S., Ito G., Behn M., Martinez F., Olive J.-A., Escartin J. Magmatic and tectonic extension at the Chile Ridge: Evidence for mantle controls on ridge segmentation // Geochem. Geophys. Geosyst. 2016. V. 17. P. 2354‒2373. doi: 10.1002/2016GC006380
  21. Khodayar M., Björnsson S., Guðnason E. Á., Níelsson S., Axelsson G., Hickson C. Tectonic Control of the Reykjanes Geothermal Field in the Oblique Rift of SW Iceland: From Regional to Reservoir Scales // Open Journal of Geology. 2018. V. 8. P. 333‒382. doi: 10.4236/ojg.2018.83021
  22. Khodayar M., Björnsson S., Víkingsson S., Jónsdóttir G.S. Unstable Rifts, a Leaky Transform Zone and a Microplate: Analogues from South Iceland // Open Journal of Geology. 2020. V. 10. Iss. 4. P. 317‒367. doi: 10.4236/ojg.2020.104017
  23. Kristjánsdóttir S., Gudnason E.Á., Ágústsson K., Ágústsdóttir Th. Hverahlíð, Hengill area: Detailed analysis of seismic activity from December 2016 to December 2019, 54 // Reykjavík: ÍSOR ‒ Iceland GeoSurvey. 2019. Report, ÍSOR-2019/051.
  24. LaFemina P.C., Dixon T.H., Malservisi R., Árnadóttir T., Sturkell E., Sigmundsson F., Einarsson P. Geodetic GPS measurements in south Iceland: strain accumulation and partitioning in a propagating ridge system // J. Geophys. Res. 2005. V. 110. B11405. doi: 10.1029/2005JB003675
  25. Le Saout M., Paigan D., Devey C.W., Lux T.S., Petersen S., Thorhallsson D., Tomkowicz A., Brix S. Variations in Volcanism and Tectonics Along the Hotspot-Influenced Reykjanes Ridge // Geochem. Geophys. Geosyst. 2023. V. 24. Iss. 4. e2022GC010788. doi: 10.1029/2022GC010788
  26. Martin E., Paquette J.L., Bosse V., Rufflet G., Tiepolo M., Sigmarsson O. Geodynamics of rift–plume interaction in Iceland as constrained by new 40Ar/39Ar and in situ U–Pb zircon ages // Earth and Planet. Sci. Lett. 2011. V. 311. P. 28–38. doi: 10.1016/j.epsl.2011.08.036
  27. Martinez F., Hey R., Höskuldsson Á. Reykjanes Ridge evolution: Effects of plate kinematics, small-scale upper mantle convection and a regional mantle gradient // Earth-Science Review. 2020. V. 203. P. 1‒24. doi: 10.1016/j.earscirev.2019.102956
  28. Mjelde R., Breivik A.J., Raum T., Mittelstaedt E., Ito G., Faleide J.I. Magmatic and tectonic evolution of the North Atlantic // Journal of the Geological Society, London. 2008. V. 165. P. 31–42. doi: 10.1144/0016-76492007-018
  29. Óladóttir B.A., Larsen G., Guðmundsson M.T. Catalogue of Icelandic Volcanoes, IMO, UI and CPD-NCIP. Available from: http://icelandicvolcanoes.is. (Last Accessed October 01, 2021).
  30. Parameswaran R.M., Thorbjarnardóttir B.S., Stefánsson R., Bjarnason I.T. Seismicity on conjugate faults in Ölfus, South Iceland: Case study of the 1998 Hjalli‐Ölfus earthquake // J. of Geophys. Res.: Solid Earth. 2020. V. 125. e2019JB019203. doi: 10.1029/2019JB019203
  31. Pedersen G.B.M., Belart J.M.C., Óskarsson B.V., Gudmundsson M.T., Gies N. Volume, Effusion Rate, and Lava Transport During the 2021 Fagradalsfjall Eruption: Results from Near Real-Time Photogrammetric Monitoring // Geophys. Res. Lett. 2022. V. 49. doi: 10.1029/2021GL097125
  32. Pedersen R., Grosse P., Gudmundsson M.T. Morphometry of glaciovolcanic edifices from Iceland: Types and evolution // Geomorphology. 2020. V. 370. 107334. doi: 10.1016/j.geomorph.2020.107334
  33. Pedersen R., Sigmundsson F., Masterlark T. Rheologic controls on inter-rifting deformation of the Northern Volcanic Zone, Iceland // Earth and Planet. Sci. Lett. 2009. V. 281. Iss. 1‒2. P. 14‒26. doi: 10.1016/j.epsl.2009.02.003
  34. Perlt J., Heinert M. Kinematic model of the South Icelandic tectonic system // Geophys. J. Int. 2006. V. 164. P. 168–175. doi: 10.1111/j.1365-246X.2005.02795.x
  35. Porter C., Morin P., Howat I., Noh M.-J., Bates B. Peterman K., Keesey S., Schlenk M., Gardiner J., Tomko K., Willis M., Kelleher C., Cloutier M., Husby E., Foga S., Nakamura H., Platson M., Wethington M. Jr., Williamson C., Bauer G., Enos J., Arnold G., Kramer W., Becker P., Doshi A., D’Souza C., Cummens P., Laurier F., Bojesen M. ArcticDEM, University of Minnesota, 2018. Available from: https://www.pgc.umn.edu/data/arcticdem (Last Accessed October 01, 2021). doi: 10.7910/DVN/OHHUKH
  36. Radaideh O.M.A., Grasemann B., Melichar R., Mosar J. Detection and analysis of morphotectonic features utilizing satellite remote sensing and GIS: An example in SW Jordan // Geomorphology. 2016. V. 275. P. 58–79. doi: 10.1016/J.GEOMORPH.2016.09.033
  37. Ruedas T., Marquart G., Schmeling H. Iceland: The current picture of a ridge-centred mantle plume // Mantle plumes – A multidisciplinary approach / Eds J.R.R. Ritter, U.R. Christensen. Springer, 2007. P. 71–126. doi: 10.1007/978-3-540-68046-8_3
  38. Sigmundsson F., Einarsson P., Bilham R., Sturkell E. Rift-transform kinematics in south Iceland: deformation from Global Positioning System measurements, 1986 and 1992 // J. Geophys. Res. 1995. V. 100. P. 6235–6248.
  39. Special protection of ecological systems and geoheritage, 1:50 000. Reykjavík: Icelandic Institute of Natural History, 2019.
  40. Sæmundsson K., Sigurgeirsson M.Á., Friðleifsson G.Ó. Geology and structure of the Reykjanes volcanic system, Iceland // J. of Volcanology and Geothermal Res. 2020. V. 391. doi: 10.1016/j.jvolgeores.2018.11.022
  41. Sæmundsson K., Sigurgeirsson M.Á., Hjartarson Á, Kaldal I., Kristinsson S.G. Geological Map of Southwest Iceland, 1:100 000. Reykjavík: Iceland GeoSurvey, 2016.
  42. Wright T.J., Sigmundsson F., Pagli C., Belachew M., Hamling I.J. Geophysical constraints on the dynamics of spreading centres from rifting episodes on land // Nature Geoscience. 2012. V. 5. P. 242‒250.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of Icelandic rift zones and adjacent spreading ridges. 1 – volcanic spreading segments, 2 – amagmatic structures of extension and shear. The study area is highlighted in red. Abbreviations: RZ – rift zone, TZ – transform zone, SIZ – South Iceland Seismic Zone, MP – microplate.

Download (766KB)
3. Fig. 2. Relief of the rift zones of southwestern Iceland (photo by A. Lukashov). a – the rift tract of Thingvellir on the Exarau River, disturbed by a series of longitudinal grabens (Heingill ES, Western RES); b – a lava flow with a roof partially intact from collapse, 1 km to the east of the Thrihnukagigur mountain (Brennysteinsfjell ES, Reykjanes RES); c – the “Valley of Smokes” of Reykjadalur, abundant in thermal springs, 3 km to the north of the Hveragerdi mountain (“Geyser Garden”), at the southeastern foot of the Heingill volcano.

Download (643KB)
4. Fig. 3. Example of fault scarp parameter extraction for the Reykjanes RZ section based on the ArcticDEM DEM [Porter et al., 2018]. a – fragment of the shaded relief raster (azimuth – 100°, altitude – 45°): examples of length (D) and Euclidean distance (distance between fault scarps) (Ep) parameters are shown, the blue rectangle shows the profiles in Fig. 3b; 1 – scarps with dipping eastern rhumbs, 2 – with dipping western rhumbs; b – variations in the parameters of horizontal (Ga), vertical (Ba) amplitude, longitudinal curvature (K) and steepness. The red lines and dots indicate the boundaries of the fault scarp on the profile, determined by the automated method. The green dot indicates the extracted values ​​of the Pk parameter.

Download (222KB)
5. Fig. 4. Location of profiles through volcanic systems of the western branch of the Icelandic rifts. 1 – east-dipping normal fault scarps, 2 – west-dipping normal fault scarps, 3 – profile positions, 4 – volcanic system boundaries, 5 – strike-slip zone, 6 – glaciers. DEM and volcanic system boundary data [Special…, 2019].

Download (754KB)
6. Fig. 5. Changes in the parameters of normal fault scarps of the western branch of the Icelandic rifts. a – total horizontal amplitude, b – total vertical amplitude, c – arithmetic mean of the length, d – arithmetic mean of the distance between fault scarps, d – arithmetic mean of the maximum modulus of longitudinal curvature. Normal fault scarps: Reykjanes RB: 1 – Reykjanes, 2 – Krysuvik, 3 – Brennisteinsfjell, 4 – Heingill; Western RB: 5 – Prestahnukur, 6 – Langjökull; Central RB: 7 – Hofsjökull, 8 – Tungnafellsjökull (a – western-dipping scarps, b – eastern-dipping scarps).

Download (169KB)
7. Fig. 5. Continuation.

Download (213KB)
8. Fig. 6. Distribution of parameter values ​​by profiles. a – horizontal amplitude. Total amplitude values ​​(m): 1 – >500, 2 – 400‒500, 3 – 300‒400, 4 – 200‒300, 5 – 100‒200, 6 – 50‒100, 7 – < 50; 8 – boundaries of volcanic systems, 9 – shear zone, 10 – glaciers; b – maximum modulus of longitudinal curvature. Average values: 1 – <2, 2 – 2‒4, 3 – 4‒6, 4 – 6‒8, 5 – 8‒10, 6 – 10‒12, 7 – >12; 8-10 – similar to A. DEM and data on the boundaries of volcanic systems [Special…, 2019].

Download (1006KB)
9. Fig. 7. Tectonic map of the western branch of the Icelandic rifts. Structures: central volcanoes: 1 - stratovolcanoes, 2 - hyaloclastic edifices of shield volcanoes, 3 - rhyolite domes; volcanic edifices of fissure families: 4 - active large lava domes, 5 - inactive lava domes, 6 - active volcanic apparatuses (craters, cinder cones); lava flows: 7 - Holocene lava flows, 8 - pre-Holocene lavas, including those covered by sediments; hyaloclastic edifices: 9 - late Quaternary hyaloclastic edifices, 10 - late Quaternary hyaloclastic domes covered by lavas, 11 - early-middle Quaternary and pre-Quaternary hyaloclastic edifices; others: 12 - geothermal fields. Volcanic systems: central volcanoes: 13 – embryonic, 14 – highly active, 15 – low active, 16 – inactive; volcanic activity of fissure families: 17 – high, 18 – moderate, 19 – low, 20 – absent; tectonic activity of fissure families: 21 – high, 22 – moderate, 23 – low. Other designations: 25 – glaciers, 26 – rift zone boundaries. DEM and data on volcanic system boundaries [Special…, 2019].

Download (531KB)

Copyright (c) 2024 Russian Academy of Sciences