Numerical simulation of orthosilicic acid polycondensation and silica particles formation inhydrothermal solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Numerical simulation of the process of polycondensation of orthosilicic acid and colloid silica particles growth under different physical and chemical conditions was done: temperature, pH, ionic strength and other. Calculated dependences of orthosilicic acid concentration and mean radius of silica particles versus time, graphs of particles dimensions distributions were received. Results of calculations were compared with experimental data. Research is important for to make clear role of colloid silica on hydrothermal mineral formation and for industrial extraction and utilization of silica, and also for mineral synthesis.

Full Text

Restricted Access

About the authors

V. V. Potapov

Research Geotechnological Center of Far East Division of Russian Academy of Sciences

Author for correspondence.
Email: vadim_p@inbox.ru
Russian Federation, Severo-Vostochnoe highway, 30, p.b. 56, Petropavlovsk-Kamchatsky, 683002

A. A. Cerdan

Moscow Lomonosov State University

Email: cerdan@mail.ru

Chemical Department

Russian Federation, Leninskie Gory, 1, building 3, Moscow, 119991

I. A. Kashutina

Kamchatka Bering State University

Email: k1i2a3@yandex.ru
Russian Federation, Leningradskaya str. 4, Petropavlovsk-Kamchatsky, 683032

References

  1. Кирюхин А.В., Шадрина С.В., Пузанков М.Ю. Моделирование термогидрогеохимических условий формирования продуктивных резевуаров в вулканогенных породах // Вулканология и сейсмология. 2013. № 2. С. 90–104.
  2. Потапов В.В., Кашутина И.А., Шунина Е.В. Численное моделирование поликонденсации ортокремниевой кислоты в гидротермальных растворах // Вулканология и сейсмология. 2016. № 5. С. 51–63.
  3. Потапов В.В., Камашев Д.В., Горбач В.А., Близнюков М.А. Образование упорядоченных надмолекулярных структур кремнезема в гидротермальном растворе // Вулканология и сейсмология. 2006. № 6. С. 12–21.
  4. Фролов Ю.Г., Шабанова Н.А., Попов В.В. Влияние температуры и рН на поликонденсацию кремниевой кислоты в водной среде // Коллоидный журнал. 1983. Т. 45. №1. С. 179–182.
  5. Чухров Ф.В. Коллоиды в земной коре. М.: Изд-во АН СССР, 1955. 671 с.
  6. Brown K.L., Bacon L.G. Manufacture of silica sols from separated geothermal water // World Geothermal Congress, Kyushu–Tohoku, Japan, May 28 – June 10. 2000. P. 533–537.
  7. Crerar D.A., Axtmann E.V. Growth and ripening of silica polymers in aqueous solutions // Geochim. et Cosmochim. Acta. 1981. V. 45. P. 1259–1266.
  8. Kiryukhin A.V., Xu T., Pruess K. et al. Thermal-hydrodynamic-chemical (THC) modeling based on geothermal field data // Geotermics. 2004. V. 33. P. 349–381.
  9. Ohsawa S., Kawamura T., Nakamatsu N., Yusa Y. Geothermal blue water colored by colloidal silica // World Geothermal Congress, Kyushu–Tohoku, Japan, May 28 – June 10. 2000. P. 663–668.
  10. Rothbaum H.P., Rohde A.G. Kinetics of silica polymerization and deposition from dilute solutions between 5 and 1800C // Journal of Colloid and Interface Science. 1979. V. 71. N. 3. P. 533–559.
  11. Weres O., Yee A., Tsao L. Kinetics of silica polymerization // Report LBL-7033, Lawrence Berkeley Laboratory. Berkeley, 1980. 256 p.
  12. Weres O., Yee A., Tsao L. Kinetics of Silica Polymerization // J. Coll. Interf. Sci. 1981. V. 84. № 2. P. 379–402.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparison of the experimental data of Rosbaum and Rode with the results of numerical simulation.

Download (99KB)
3. Fig. 2. Dependence of the concentration of dissolved silicic acid on the time for the calculated and experimental data obtained for the conditions of the Pauzhetsky deposit.

Download (97KB)
4. Fig. 3. Comparison of experimental data and numerical simulation results, under the conditions: a - t = 84 ° С, pH 8.1, СS = 570 mg / kg (Wairakei deposit); b - t = 95 ° С, pH 8.0, СS = 620 mg / kg (well 11 of the Broadlands field); in - t = 95 ° С, pH 7.7, СS = 900 mg / kg (well 22 fields of Broadlands).

Download (150KB)
5. Fig. 4. Particle size distribution under the conditions: a - t = 33 ° C, pH 8.1, initial concentration CS = 366 mg / kg; b - t = 38 ° C, pH 6.7, initial concentration CS = 546 mg / kg; in - t = 43 ° C, pH 7.8, initial concentration CS = 416 mg / kg.

Download (115KB)
6. Fig. 5. Comparison of numerical simulation results and experimental data presented in [Frolov et al., 1983].

Download (91KB)
7. Fig. 6. Technological scheme of membrane concentration of silica sol.

Download (149KB)
8. Fig. 7. Parameters of the technological scheme for the extraction of silica.

Download (132KB)
9. Fig. 8. Particle size distribution according to dynamic light scattering (d - particle diameter, nm). Well 054 Mutnovskogo field.

Download (83KB)

Copyright (c) 2019 Russian academy of sciences