Numerical simulation of orthosilicic acid polycondensation and silica particles formation inhydrothermal solutions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Numerical simulation of the process of polycondensation of orthosilicic acid and colloid silica particles growth under different physical and chemical conditions was done: temperature, pH, ionic strength and other. Calculated dependences of orthosilicic acid concentration and mean radius of silica particles versus time, graphs of particles dimensions distributions were received. Results of calculations were compared with experimental data. Research is important for to make clear role of colloid silica on hydrothermal mineral formation and for industrial extraction and utilization of silica, and also for mineral synthesis.

Texto integral

Acesso é fechado

Sobre autores

V. Potapov

Research Geotechnological Center of Far East Division of Russian Academy of Sciences

Autor responsável pela correspondência
Email: vadim_p@inbox.ru
Rússia, Severo-Vostochnoe highway, 30, p.b. 56, Petropavlovsk-Kamchatsky, 683002

A. Cerdan

Moscow Lomonosov State University

Email: cerdan@mail.ru

Chemical Department

Rússia, Leninskie Gory, 1, building 3, Moscow, 119991

I. Kashutina

Kamchatka Bering State University

Email: k1i2a3@yandex.ru
Rússia, Leningradskaya str. 4, Petropavlovsk-Kamchatsky, 683032

Bibliografia

  1. Кирюхин А.В., Шадрина С.В., Пузанков М.Ю. Моделирование термогидрогеохимических условий формирования продуктивных резевуаров в вулканогенных породах // Вулканология и сейсмология. 2013. № 2. С. 90–104.
  2. Потапов В.В., Кашутина И.А., Шунина Е.В. Численное моделирование поликонденсации ортокремниевой кислоты в гидротермальных растворах // Вулканология и сейсмология. 2016. № 5. С. 51–63.
  3. Потапов В.В., Камашев Д.В., Горбач В.А., Близнюков М.А. Образование упорядоченных надмолекулярных структур кремнезема в гидротермальном растворе // Вулканология и сейсмология. 2006. № 6. С. 12–21.
  4. Фролов Ю.Г., Шабанова Н.А., Попов В.В. Влияние температуры и рН на поликонденсацию кремниевой кислоты в водной среде // Коллоидный журнал. 1983. Т. 45. №1. С. 179–182.
  5. Чухров Ф.В. Коллоиды в земной коре. М.: Изд-во АН СССР, 1955. 671 с.
  6. Brown K.L., Bacon L.G. Manufacture of silica sols from separated geothermal water // World Geothermal Congress, Kyushu–Tohoku, Japan, May 28 – June 10. 2000. P. 533–537.
  7. Crerar D.A., Axtmann E.V. Growth and ripening of silica polymers in aqueous solutions // Geochim. et Cosmochim. Acta. 1981. V. 45. P. 1259–1266.
  8. Kiryukhin A.V., Xu T., Pruess K. et al. Thermal-hydrodynamic-chemical (THC) modeling based on geothermal field data // Geotermics. 2004. V. 33. P. 349–381.
  9. Ohsawa S., Kawamura T., Nakamatsu N., Yusa Y. Geothermal blue water colored by colloidal silica // World Geothermal Congress, Kyushu–Tohoku, Japan, May 28 – June 10. 2000. P. 663–668.
  10. Rothbaum H.P., Rohde A.G. Kinetics of silica polymerization and deposition from dilute solutions between 5 and 1800C // Journal of Colloid and Interface Science. 1979. V. 71. N. 3. P. 533–559.
  11. Weres O., Yee A., Tsao L. Kinetics of silica polymerization // Report LBL-7033, Lawrence Berkeley Laboratory. Berkeley, 1980. 256 p.
  12. Weres O., Yee A., Tsao L. Kinetics of Silica Polymerization // J. Coll. Interf. Sci. 1981. V. 84. № 2. P. 379–402.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian academy of sciences, 2019