Cryoseismology of the severnaya zemlya archipelago – the first results of permanent monitoring

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

We present the first results of local seismicity monitoring of the Severnaya Zemlya archipelago for the end of 2016 to 2023, recorded by a single permanent seismic station installed on Bolshevik Island. 73 local seismic events with P- and S-phases have been identified. The possibility of their sorting (earthquake or icequake) by comparing their waveforms and time-frequency analysis with regional earthquakes that occurred in the archipelago area is considered. The spatial and temporal sequence and migration rate of the events show that glacial-type events can be the result of stress discharge in glaciers under the impact of shallow crustal earthquakes within a radius of ~30 km. It is shown how, given the difficulty of deploying a seismic network, even a single permanent seismic station can provide useful information on glacial and crustal earthquakes.

全文:

受限制的访问

作者简介

G. Antonovskaya

Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: essm.ras@gmail.com
俄罗斯联邦, Arkhangelsk

Ya. Konechnaya

Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences; Geophysical Survey, Russian Academy of Sciences

Email: essm.ras@gmail.com
俄罗斯联邦, Arkhangelsk; Obninsk

N. Kapustian

Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences

Email: essm.ras@gmail.com
俄罗斯联邦, Arkhangelsk

E. Morozova

Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences

Email: essm.ras@gmail.com
俄罗斯联邦, Arkhangelsk

参考

  1. Акимов А.П., Красилов С.А. Программный комплекс WSG “Система обработки сейсмических данных”. Свидетельство о государственной регистрации программы для ЭВМ № 20206646٧8 от 16.11.2020 г.
  2. Антоновская Г.Н., Ковалев С.М., Конечная Я.В., Смирнов В.Н., Данилов А.В. Новые сведения о сейсмичности российской Арктики по данным пункта сейсмических наблюдений “Северная Земля” // Проблемы Арктики и Антарктики. 2018. Т. 64. № 2(116). С. 170–181. doi: 10.30758/0555-2648-2018-64-2-170-181
  3. Атлас “Геология и полезные ископаемые шельфов России” / Гл. ред. М.Н. Алексеев. М.: Научный мир, 2004. 279 c.
  4. Богородский П.В., Макштас А.П., Кустов В.Ю. Первые результаты мерзлотных наблюдений на НИС “Ледовая база “Мыс Баранова” // Исследование природной среды высокоширотной Арктики на НИС “Ледовая база “Мыс Баранова” / Под общей редакцией А.П. Макштаса и В.Т. Соколова. СПб.: ААНИИ, 2021. С. 184–193.
  5. Бузин И.В., Глазовский А.Ф., Май Р.И., Миронов Е.У., Нестеров А.В., Наумов А.К., Гудошников Ю.П. Исследование динамики и морфометрии ледников и айсбергов и прикладное использование полученных результатов при освоении углеводородных месторождений на континентальном шельфе Российской Арктики // Вестник Российского фонда фундаментальных исследований. 2020. Т. 3-4(107-108). С. 21–37.
  6. Быков В.Г. Предсказание и наблюдение деформационных волн Земли // Геодинамика и тектонофизика. 2018. Т. 9. № 3. С. ٧21–٧54. doi: 10.5800/GT‐2018‐9‐3‐0369
  7. Верниковский В.А., Добрецов Н.Л., Метелкин Д.В., Матушкин Н.Ю., Кулаков И.Ю. Проблемы тектоники и тектонической эволюции Арктики // Геология и геофизика. 2013. Т. 54. № 8. С. 1083–110٧.
  8. Виноградов Ю.А., Федоров А.В., Баранов С.В., Асминг В.Э., Федоров И.С. О выделении айсбергообразующих льдотрясений по сейсмоинфразвуковым данным // Лед и снег. 2021. Т. 61. № 2. https://doi.org/10.31857/S2076673421020087.
  9. Голубев В.Н. Современные колебания ледникового купола Вавилова на Северной Земле // Материалы гляциологических исследований. 1998. Вып. 85. С. 196–204.
  10. Каминский В.Д. Глубинное строение Центрального Арктического бассейна / Автореф. дисс. … доктора геол.-мин. наук. СПб., 2009. 47 с.
  11. Каталог ледников СССР / Отв. ред. О.Н. Виноградов. 1980. Т. 16. Вып. 1. 81 с.
  12. Котляков В.М. Ледники // Большая российская энциклопедия 2004–201٧.
  13. https://bigenc.ru/geology/text/5556912? (Дата обращения 05.02.2024).
  14. Кочарян Г.Г. Геомеханика разломов / Отв. ред. акад. РАН В.В. Адушкин. М.: ГЕОС, 2016. 424 с.
  15. Малышев Н.А., Никишин В.А., Никишин А.М., Обметко В.В., Мартиросян В.Н., Клещина Л.Н., Рейдик Ю.В. Новая модель геологического строения и истории формирования Северо-Карского осадочного бассейна // Доклады Академии наук. 2012. Т. 445. № 1. С. 50–54. http://www.evgengusev.narod.ru/tecto/malyshev-2012.pdf
  16. Морозов А.Н., Ваганова Н.В., Асминг В.Э., Евтюгина З.А. Шкала ML для западной части Евразийской Арктики // Российский сейсмологический журнал. 2020. Т. 2. № 4. С. 63–68. doi: 10.35540/2686-7907.2020.4.06.
  17. Репина И.А., Артамонов А.Ю., Варенцов М.И., Хавина Е.М. Взаимодействие атмосферы и океана в Северном Ледовитом океане по данным измерений в летне–осенний период // Российская Арктика. 2019. № 7. С. 49–61. doi: 10.24411/2658-4255-2019-100٧5.
  18. Ружич В.В., Псахье С.Г., Черных Е.Н., Борняков С.А., Гранин Н.Г. Деформации и сейсмические явления в ледяном покрове озера Байкал // Геология и геофизика. 2009. Т. 50. № 3. С. 289–299.
  19. Сочнев О.Я., Корнишин К.А., Тарасов П.А., Сальман А.Л., Глазовский А.Ф., Лаврентьев И.И., Ефимов Я.О., Мамедов Т.Э. Исследование ледников российской Арктики для обеспечения айсберговой безопасности работ на шельфе // Нефтяное хозяйство. 2018. № 10. С. 92–97. doi: 10.24887/0028-2448-2018-10-92-97
  20. Федоров А.В., Асминг В.Э., Баранов С.В., Виноградов А.Н., Евтюгина З.А., Горюнов В.А. Сейсмологические наблюдения за активностью ледников архипелага Шпицберген // Вестник МГТУ. 2016. Т. 19. № 1/1. С. 151–159.
  21. Цытович Н.А. Механика мерзлых грунтов: Общая и прикладная // Изд. стереотип. 2019. 446 с.
  22. Шапошников В.М., Александров А.В., Матанцев Р.А., Ивановская О.Д. Анализ айсберговой опасности на Северном морском пути на примере газовозов // Арктика: экология и экономика. 2017. № 2(26). С. 76–81.
  23. Antonovskaya G.N., Basakina I.M., Vaganova N.V., Kapustian N.K., Konechnaya Y.V., Morozov A.N. Spatiotemporal Relationship between Arctic Mid-Ocean Ridge System and Intraplate Seismicity of the European Arctic // Seismolog. Res. Lett. 2021. V. 92. № 5. P. 2876–2890. https://doi.org/10.1785/0220210024.
  24. Arctic Petroleum Geology. Geological Society Memoir 35 / Eds A.M. Spencer, A.F. Embry, D.L. Gautier, A.V. Stupakova, K. Sørensen. London: Geological Society, 2011. 661 р. doi: 10.1144/M35.21
  25. Aster R., Winberry J. Glacial seismology // Reр. Prog. Phys. 2017. V. 80(126801). 39 р.
  26. doi: 10.1088/1361-6633/aa8473.
  27. Berg B., Bassis J. Crevasse advection increases glacier calving // Journal of Glaciology. 2022. P. 1–10. doi: 10.1017/jog.2022.10
  28. Blankenship D.D., Anandakrishnan S., Kempf J.L., Bentley C.R. Microearthquakes Under and Alongside Ice Stream B, Antarctica. Detected By A New Passive Seismic Array // Annals of Glaciology. 1987. V. 9. Р. 30–34. DOI: https://doi.org/10.3189/S0260305500200712
  29. Deichmann N., Ansorge J., Scherbaum F., Aschwanden A., Bernardi F., Gudmundsson G.H. Evidence for deep icequakes in an Alpine glacier // Annals of Glaciology. 2000. V. 31(1). P. 85–90. doi: 10.3189/172756400781820462
  30. Dowdeswell J.A., Gorman M.R., Bassford R.P., Williams M. et al. Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic // J. of Geophys. Res. 2002. V. 107(B4). P. 1–16. doi: 10.1029/2000jb000129
  31. Dowdeswell J.A., Williams M. Surge-type glaciers in the Russian High Arctic identified from digital satellite imagery // Journal of Glaciology. 1997. V. 43(145). P. 489–494. doi: 10.3189/S0022143000035097
  32. Ekström G., Nettles M., Abers G.A. Glacial earthquakes // Science. 2003. V. 302(5645). P. 622–624. doi: 10.1126/science.1088057
  33. Ekström G., Nettles M., Tsai V.C. Seasonality and increasing frequency of Greenland glacial earthquakes // Science. 2006. V. 311(5768). P. 1756–1758. doi: 10.1126/science.1122112
  34. ELRESS, Event Locator Seismological Software, 2021. Available from: http://www.krsc.ru/?q=en/EL (Last Accessed February 6, 2024)
  35. Engen Ø., Eldholm O., Bungum H. The Arctic plate boundary // J. of Geophys. Res. 2003. V. 108. № B2. 2075. doi: 10.1029/2002JB001809
  36. Fedorov A.V., Asming V.E., Jevtjugina Z.A., Prokudina A.V. Automated Seismic Monitoring System for the European Arctic // Seismic. Instruments. 2019. V. 55. P. 17–23.
  37. https://doi.org/10.3103/S0747923919010067
  38. Hudson T.S., Brisbourne A.M., Walter F., Graff D., White R.S., Smith A.M. Icequake source mechanisms for studying glacial sliding // J. of Geophys. Res.: Earth Surface. 2020. V. 125. e2020JF005627.
  39. https://doi.org/10.1029/2020JF005627
  40. Kawasaki I., Asai Y., Tamura Y. Space-time distribution of interpolate moment release including slow earthquakes and the seismo-geodetic coupling in the Sanriku-oki region along the Japan trench // Tectonophysics. 2001. V. 330. P. 267–283. doi: 10.1016/S0040-1951(00)00245-6
  41. Köhler A., Maupin M., Nuth C., Van Pelt W. Characterization of seasonal glacial seismicity from a single-station on-ice record at Holtedahlfonna, Svalbard // Annals of Glaciology. 2019. V. 60(79). doi: 10.1017/aog.2019.15
  42. Köhler A., Nuth C., Schweitzer J., Weidle C., Gibbons S.J. Regional passive seismic monitoring reveals dynamic glacier activity on Spitsbergen, Svalbard // Polar Research. 2015. V. 34:1. 26178. doi: 10.3402/polar.v34.26178
  43. Konstantinou K.I., Schlindwein V. Nature, wavefield properties and source mechanism of volcanic tremor: A review // J. Volcanol. Geotherm. Res. 2003. V. 119(1–4). P. 161–187. doi: 10.1016/S0377-0273(02)00311-6
  44. Kremenetskaya E., Asming V., Ringdal F. Seismic Location Calibration of the European Arctic // Pure and Applied Geophysics. 2001. V. 158. P. 117–128. https://doi.org/10.1007/PL00001151
  45. Lay T., Wallace T.C. Modern global seismology. San Diego, CA: Academic Press, 1995.
  46. Mikesell T.D., van Wijk K., Haney M.M., Bradford J.H., Marshall H.P., Harper J.T. Monitoring glacier surface seismicity in time and space using Rayleigh waves // J. of Geophys. Res. 2012. V. 117. F02020. doi: 10.1029/2011JF002259
  47. Moholdt G., Wouters B., Gardner A.S. Recent mass changes of glaciers in the Russian High Arctic // Geophys. Res. Lett. 2012. V. 39. P. 1–5. doi: 10.1029/2012gl051466
  48. Morozov A.N., Vaganova N.V., Asming V.E., Mikhailova Ya.A. Seismicity of the North of the Russian Plate: Relocation of Recent Earthquakes // Izvestiya, Physics of the Solid Earth. 2018. V. 54. № 2. Р. 292–309. doi: 10.1134/S1069351318020143
  49. Morozov A.N., Vaganova N.V., Konechnaya Ya.V., Asming V.E., Dulentsova L.G., Evtyugina Z.A. Seismicity in the far Arctic areas: Severnaya Zemlya and the Taimyr Peninsula // Journal of Seismology. 2021. V. 25. Iss. 5. P. 1171–1188. doi: 10.1007/s10950-021-10032-1
  50. Ohta Y., Freymueller J.T., Hreinsdóttir S., Suito H.A. A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone // Earth and Planet. Sci. Lett. 2006. V. 247(1–2). P. 108–116. http://dx.doi.org/10.1016/j.epsl.2006.05.013
  51. O’Neel S., Marshall H.P., McNamara D.E., Pfeffer W.T. Seismic detection and analysis of icequakes at Columbia Glacier, Alaska // J. of Geophys. Res. 2007. V. 112. F03S23. doi: 10.1029/2006JF000595
  52. O’Neel S., Pfeffer W.T. Source mechanics for monochromatic icequakes produced duringiceberg calving at Columbia Glacier, AK // Geophys. Res. Lett. 2007. V. 34. L22502. doi: 10.1029/2007GL031370
  53. Podolskiy E.A., Walter F. Cryoseismology // Rev. Geophys. 2016. V. 54. P. 708–758. doi: 10.1002/2016RG000526
  54. Pubellier M., Rossi P., Petrov O., Shokalsky S., St-Onge M., Khanchuk A., Pospelov I. Tectonic map of the Arctic / 1st ed., scale 1:10 000 000. St. Petersburg, Russia: VSEGEI Printing House, 2018. doi: 10.14683/2018TEMAR10M
  55. Sánchez-Gámez P., Navarro F.J., Dowdeswell J.A., De Andrés E. Surface velocities and calving flux of the Academy of Sciences Ice Cap, Severnaya Zemlya // Ice and Snow. 2020. V. 60(1). P. 19–28. doi: 10.31857/S2076673420010020
  56. Walter F., Canassy P.D., Husen S., Clinton J.F. Deep icequakes: what happens at the base of Alpine glaciers? // J. of Geophys. Res.: Earth Surface. 2013. V. 118. P. 1720–1728. doi: 10.1002/jgrf.20124
  57. West M.E., Larsen C.F., Truffer M., O’Neel S., Le Blanc L. Glacier microseismicity // Geology. 2010. V. 38(4). P. 319–322. doi: 10.1130/G30606.1
  58. Winter K., Lombardi D., Diaz‐Moreno A., Bainbridge R. Monitoring Icequakes in East Antarctica with the Raspberry Shake // Seismolog. Res. Lett. 2021. V. 92(5). P. 2736–2747. doi: 10.1785/0220200483

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Spatial distribution of seismic events in the area of ​​the Severnaya Zemlya archipelago on a fragment of the physical map (a) and the map of the main neotectonic and geomorphological elements of the Arctic (b) according to [Vernikovsky et al., 2013].

下载 (505KB)
3. Fig. 2. Waveforms for the Z-, N- and E-channels and the SWAN diagram for the Z-channel of the tectonic earthquake recorded by the SVZ station on March 31, 2022 in the area of ​​Komsomolets Island.

下载 (374KB)
4. Fig. 3. Location of seismic events in the area of ​​Oktyabrskoy Revolyutsii Island, Severnaya Zemlya Archipelago, on a fragment of the map of the main neotectonic and geomorphological elements of the Arctic (a) according to [Vernikovsky et al., 2013] and a histogram of the local magnitude of seismic events (b). See the legend in Fig. 1.

下载 (230KB)
5. Fig. 4. Waveforms for Z-, N- and E-channels and SWAN diagrams of local seismic events recorded by SVZ (a – group A, b – group B).

下载 (737KB)
6. Fig. 5. Distribution of events about the October Revolution.

下载 (365KB)
7. Fig. 6. Temporal variations in the migration of epicenters of events of groups A and B for 2017–2018 along the I–I´ line (a) and the frequency histogram of apparent velocities (b).

下载 (139KB)

版权所有 © Russian Academy of Sciences, 2024