Long-term Coastline Monitoring in the Thanh Hoa Province (Vietnam) Using Landsat 5 and Landsat 8 Data
- Autores: Le T.1, Trinh L.2, Zablotskii V.R.3, Tran Q.1, Tran X.4, To T.5, Le V.2, Le V.6
-
Afiliações:
- Vietnam National University of Agricuture
- Le Quy Don Technical University
- Moscow State University of Geodesy and Cartography
- Hanoi University of Natural Resources and Environment
- Thanh Dong University
- Thai Nguyen University of Agriculture and Forestry
- Edição: Nº 3 (2024)
- Páginas: 30-46
- Seção: ИСПОЛЬЗОВАНИЕ КОСМИЧЕСКОЙ ИНФОРМАЦИИ О ЗЕМЛЕ
- URL: https://journals.eco-vector.com/0205-9614/article/view/659130
- DOI: https://doi.org/10.31857/S0205961424030038
- EDN: https://elibrary.ru/FBBCDQ
- ID: 659130
Citar
Texto integral
Resumo
In recent years, extensive human activities have had a profound impact on the estuaries and coastal areas of Vietnam, most notably in coastal erosion and accretion. This paper used the Landsat multi-temporal data for the period 1988–2022 to assess coastline change in Thanh Hoa province (North Central Vietnam). Water indices calculated from Landsat imagery data, including NDWI, ANDWI, MNDWI, AWEInsh, AWEIsh, and BandWet, are used to extract surface water areas and then vectorize and overlay to estimate shoreline variability. The Otsu thresholding method is used to classify “water surface” and “land objects” and then evaluate the accuracy using the Kappa coefficient. The obtained results show that the ANDWI index has the highest accuracy in extracting the water body of the study area, in which the value of the Kappa coefficient reaches 0.95 compared to 0.91, 0.92, 0.93, 0.92 and 0.92 at using NDWI, MNDWI, AWEInsh, AWEIsh and BandWet indicies. Boundary vectorization and vector image overlays were performed to assess shoreline variability and map shoreline dynamics. The results obtained show that in the northern part of the coastal zone of Thanh Hoa province there is active accretion (increment) of the coastline. The average accretion rate was 150 m/year, the maximum rate was 457 m/year. In contrast, on the southern coast of Thanh Hoa province, coastline erosion predominates with a maximum rate of 38 m/year and an average rate of about 10 m/year.
Palavras-chave
Sobre autores
Thi Giang Le
Vietnam National University of Agricuture
Email: trinhlehung@lqdtu.edu.vn
Vietnã, Hanoi
Le Hung Trinh
Le Quy Don Technical University
Autor responsável pela correspondência
Email: trinhlehung@lqdtu.edu.vn
Vietnã, Hanoi
V. Zablotskii
Moscow State University of Geodesy and Cartography
Email: trinhlehung@lqdtu.edu.vn
Rússia, Moscow
Quoc Vinh Tran
Vietnam National University of Agricuture
Email: trinhlehung@lqdtu.edu.vn
Vietnã, Hanoi
Xuan Bien Tran
Hanoi University of Natural Resources and Environment
Email: trinhlehung@lqdtu.edu.vn
Vietnã, Hanoi
Thi Phuong To
Thanh Dong University
Email: trinhlehung@lqdtu.edu.vn
Vietnã, Hai Duong province
Van Phu Le
Le Quy Don Technical University
Email: trinhlehung@lqdtu.edu.vn
Vietnã, Hanoi
Van Tho Le
Thai Nguyen University of Agriculture and Forestry
Email: trinhlehung@lqdtu.edu.vn
Vietnã, Thai Nguyen
Bibliografia
- Bondur V.G. Kosmicheskij monitoring emissij malyh gazovyh komponent i aerozolej pri prirodnyh pozharah v Rossii // Issledovanie Zemli iz kosmosa. 2015. № 6. Р. 21–35. doi: 10.7868/S0205961415060032.
- Bondur V.G., Zverev A.T. Metod prognozirovaniya zemletryasenij na osnove lineamentnogo analiza kosmicheskih izobrazhenij // Doklady Akademii nauk. 2005. V. 402. № 1. P. 98‒105.
- Acar U., Bayram B., Sanli B., Abdikan S., Sunar F., Cetin H. An algorithm for coastline detection using SAR images // International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2012. Vol. XXXIX-B3. XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia.
- Acharya T., Subedi A., Lee D. Evaluation of water indices for surface water extraction in a Landsat 8 scence of Nepan // Sensors. 2018a. 18(8):2580. doi: 10.3390/s18082580.
- Acharya T., Subedi A., Yang I., Lee D. Combining water indices for water and background threshold in Landsat image // Proceedings. 2018b. V. 2(3). P.143. https://doi.org/10.3390/ecsa-4-04902.
- Alesheikh A., Ghorbanali A., Nouri A. Coastline change detection using remote sensing // International Journal of Environmental Science and Technology. 2007. V. 4(1). P. 61–66.
- Baghermanesh S.S., Jabari S., McGrath H. Urban flood detection using TerraSAR-X and SAR simulated reflectivity maps // Remote Sensing. 2022. V. 14. 6154. https://doi.org/10.3390/rs14236154.
- Cuong N.Q., Cu N.V. Intergradted coastal management in Vietnam: current situation and orientation // Journal of Marine Science and Technology. 2014. V. 1491. P. 89–96.
- Ding J., Cuo L., Zhang Y., Zhu F. Monthly and annual temperature extremes and their changes on the Tibetan Plateau and its surroundings during 1963–2015 // Scientific Reports. 2018. V. 8. P. 1–23.
- Duong T.L., Dang V.K., Dao N.H., Nguyen T.D., Dinh X.V., Weber C. Monitoring of coastline change using Sentinel-2A and Landsat 8 data, a case study of Cam Pha city ‒ Quang Ninh province // Vietnam Journal of Earth Sciences. 2021. V. 43(3). P. 249–272. https://doi.org/10.15625/2615-9783/16066.
- Feyisa G., Meiby H., Fensholt R., Proud S. Automated water extraction index: A new technique for surface water mapping using Landsat imagery // Remote Sensing of Environment. 2014. V. 140. P. 23–35.
- Frazier P.S., Page K.J. Water body detection and delineation with Landsat TM data // Photogrammetric Engineering & Remote Sensing. 2000. V. 66. P. 1461–1467.
- Gao B.C. NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space // Remote Sensing of Environment. 1996. V. 58. P. 257–266.
- Hassani M., Chabou M.C., Hamoudi M., Guettouche M.S. Index of extraction of water surfaces from Landsat 7 ETM+ images // Arabian Journal of Geosciences. 2015. V. 8. P. 3381–3389.
- Huete A., Didan K., Miura T., Rodriguez E., Gao X., Ferreira L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices // Remote Sensing of Environment. 2002. V. 83. P. 195–213. doi: 10.1016/S0034-4257(02)00096-2.
- Laonamsai J., Julphunthong P., Saprathet T., Kimmany B., Ganchanasuragit T., Chomcheawchan P., Tomun N. Utilizing NDWI, MNDWI, SAVI, WRI, and AWEI for estimating erosion and deposition in Ping River in Thailand // Hydrology. 2023. 10(3):70. https://doi.org/10.3390/hydrology10030070.
- Liu H., Hu H., Liu X., Jiang H., Liu W., Yin X. A comparison of different water indices and band downscaling methods for water bodies mapping from Sentinel-2 imagery at 10m resolution // Water. 2022. V. 14. 2696. https://doi.org/10.3390/w14172696.
- McFeeters S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features // International Journal of Remote Sensing. 1996. V. 17(7). P. 1425–1432. doi: 10.1080/01431169608948714.
- Mustafa M., Hassoon K., Hussain H., Modher H. Abd. Using water indices (NDWI, MNDWI, WRI and AWEI) to detect physical and chemical parameters by apply remote sensing and GIS techniques // International Journal of Research – Granthalayah. 2017. V. 5(10). P. 117–128.
- Nguyen C.Q., Pham V.H. Characteristics of dynamic geomorphology of coastal-river mouth zones of Ma river, Thanh Hoa province // Vietnam Journal of Earth Sciences. 2016. V. 38(1). P. 59–65.
- Otsu N. A threshold selection methodfrom gray level histogram // IEEE Trans.systems. Man. and Cybernetics. 1979. V. 9. P. 62‒66.
- Paz-Delgado M.V., Payo A., Gómez-Pazo A., Beck A.L., Savastano S. Shoreline change from optical and Sar satellite imagery at Macro-Tidal estuarine, Cliffed open-coast and Gravel Pocket-beach // Journal of Marine Science and Engineering. 2022. V. 10. P. 561. https://doi.org/10.3390/jmse10050561.
- Rad A.M., Kreitler J., Sadegh M. Augmented Normalized Difference Water Index for improved surface water monitoring // Environmental Modelling and Software. 2021. https://doi.org/10.1016/j.envsoft.2021.105030.
- Sarp G., Ozcelik M. Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey // Journal of Taibah University for Science. 2017. V. 11(3). P. 381‒391.
- Serban C., Maftei C., Dobrica G. Surface water change detection via water indices and predictive modeling using remote sensing imagery: A case study of Nuntasi-Tuzla Lake, Romania // Water. 2022. V. 14. 556. https://doi.org/10.3390/w14040556.
- Shen L., Li C. Water Body Extraction from Landsat ETM+ imagery using adaboost algorithm // In Proceedings of the 18th International Conference on Geoinformatics. 2010. Beijing, China, 18–20 June 2010. P. 1–4.
- Tran V.T., Doan H.P. Applying remote sensing and GIS for study change in coastal areas of Ca Mau cape // Vietnam Hydrometeorology Journal. 2017. V. 12. P. 35–40. (In Vietnamese).
- Trinh L.H., Le T.G., Kieu V.H., Tran T.M.L., Nguyen T.T.N. Application of remote sensing technique for shoreline change detection in Ninh Binh and Nam Dinh provinces (Vietnam) during the period 1988 to 2018 based on water indices // Russian Journal of Earth Sciences. 2020. V. 20(2). ES2004. P. 15. doi: 10.2205/2020ES000686.
- Trinh L.H., Andrade E.R.M, Pham T.A. Application of remote sensing to extract flood areas using ENVISAT ASAR data // Journal of Sciences, Orel State Agrarian University. 2015. V. 1(52). P. 36–42.
- Trung N.V., Khanh N.V. Monitoring coastline changes using Landsat multi-temporal data in the Cua Dai estuary, Thu Bon River, Quang Nam // Journal of Mining and Earth Sciences. 2016. V. 57. P. 81–89. (In Vietnamese).
- Xu H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery // International Journal of Remote Sensing. 2006. V. 27(14). P. 3025‒3033.
- Wang X., Xie S., Zhang X., Chen C., Guo H., Du J., Duan Z. A robust multi-band water index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery // International Journal of Applied Earth Observation and Geoinformation. 2018. V. 68. P. 73–91.
- Winasro G., Budhiman S. The potential application of remote sensing data for coastal study // Proc. 22nd, Asian Conference on Remote sensing. 2001. Singapore. P. 5.
- Wu H., Song H., Huang J., Zhong H., Zhan R., Teng X., Qiu Z., He M., Cao J. Flood detection in dual-polarization SAR images based on multi-scale deeplab model // Remote Sensing. 2022. V. 14. 5181. https://doi.org/10.3390/rs14205181.
- Yan P., Zhang Y. A study on information extraction of water system in semi-arid regions with the Enhanced Water Index (EWI) and GIS based noise remove techniques // Remote Sensing Information. 2007. V. 6. P. 62‒67.
- Yang Y., Liu Y., Zhou M., Zhang S., Zhan W., Sun C., Duan Y. Landsat 8 OLI image based terrestrial water extraction from heterogeneous backgrounds using a reflectance homogenization approach // Remote Sensing of Environment. 2015. V. 171. P. 14‒32. doi: 10.1016/j.rse.2015.10.005.
- Zou Z., Xiao X., Dong J., Qin Y., Doughty R.B., Menarguez M.A., Wang J. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016 // Proceedings of the National Academy of Sciences. 2018. V. 115(15). P. 3810–3815. https://doi.org/10.1073/pnas.1719275115.
Arquivos suplementares
