Changes in the Nature of Temperature Anomalies of the Black Sea Surface During the Warming Period of the Late 20th–Early 21st Centuries
- Авторлар: Polonsky A.B.1, Serebrennikov A.N.1
-
Мекемелер:
- Institute of Natural and Technical Systems
- Шығарылым: № 6 (2023)
- Беттер: 118-132
- Бөлім: ДИСКУССИИ
- URL: https://journals.eco-vector.com/0205-9614/article/view/659174
- DOI: https://doi.org/10.31857/S0205961423060064
- EDN: https://elibrary.ru/DGILDM
- ID: 659174
Дәйексөз келтіру
Толық мәтін
Аннотация
Based on the analysis of satellite data from 1982 to 2021 with a spatial resolution of about 0.05° × 0.05°, the total increase in the Black Sea surface temperature was confirmed. Annual temperature averaged over the entire Black Sea rises with the rate of about 0.6°C/10 years. The annual temperature increment due to the linear trend is at a maximum in May–June. In these months of the hydrological spring, the rate of increase in sea surface temperature (SST) is about one and a half times greater than in October–November. For most of the year, the general warming of the surface water layer is not accompanied by a significant increase in the intra-monthly SST variance. Such an increase is observed only in some months of the transition seasons, especially during the hydrological spring, when the absolute magnitude of extreme thermal anomalies and their area significantly increases. The maximum amplitudes of interannual variations of SST are confined to the northwestern part of the Black Sea. Changes in atmospheric pressure and wind fields significantly impact on the spatiotemporal SST structure of the. Long-term trends of driving pressure above the Black Sea indicate an intensification of regional cyclonic activity in the atmosphere (especially pronounced since 2009), which leads to increased generation of the negative SST anomalies of significant amplitude. Such anomalies occur mainly in the warm half-year (especially in May and October) due to the development of wind-driven upwelling. The May and October negative SST anomalies from the range of –(6–5)°C are characterized by maximum areas. Warm anomalies are also most often recorded in May and (to a lesser extent) in October. They are generated by abnormal heat fluxes on the sea surface, including in shallow areas of the shelf and spread to open areas of the Black Sea due to horizontal advection of mainly wind origin. The described patterns of spatio-temporal SST variability and their causes are illustrated by a case-study of extreme thermal anomalies using comprehensive analysis of wind and SST fields of high spatial resolution.
Авторлар туралы
A. Polonsky
Institute of Natural and Technical Systems
Хат алмасуға жауапты Автор.
Email: apolonsky5@mail.ru
Russia, Sevastopol
A. Serebrennikov
Institute of Natural and Technical Systems
Email: apolonsky5@mail.ru
Russia, Sevastopol
Әдебиет тізімі
- Вентцель Е.С. Теория вероятностей: Учеб. для вузов // М.: Высш. шк. 1999. 576 с.
- Гидрометеорология и гидрохимия морей СССР. Т. 4. Черное море. Вып. 1. Гидрометеорологические условия. Справочник. // СПб.: Гидрометеоиздат. 1991. 430 с.
- Дорофеев В.Л., Сухих Л.И. Анализ изменчивости гидрофизических полей Черного моря в период 1993–2012 г. на основе результатов выполненного реанализа // Морской гидрофизический журн. 2016. № 1(187). С. 33–48. https://doi.org/10.22449/0233-7584-2016-1-33-48
- Изменчивость гидрофизических полей Черного моря. Под ред. Б.А. Нелепо. // Л.: Гидрометеоиздат. 1984. 240 с.
- Овчинников И.М., Попов Ю.И. К вопросу о формировании холодного промежуточного слоя в Черном море // ДАН СССР. 1984. Т. 279. № 4. С. 986–989.
- Полонский А.Б., Воскресенская Е.Н. О причинах понижения температуры в Черном море // Докл. НАН Украины. 2003. № 12. С. 108–111.
- Полонский А.Б., Дробосюк Н.С. О резких понижениях температуры поверхности Черного моря по данным многолетних спутниковых наблюдений // Системы контроля окружающей среды. 2018. № 13(33). С. 42–49. https://doi.org/10.33075/2220-5861-2018-3-42-49
- Полонский А.Б., Музылева М.А. Современная пространственно-временная изменчивость апвеллинга в северо-западной части Черного моря и у побережья Крыма // Известия РАН. Серия географическая. Вып. 4. 2016. С. 96–108.
- Полонский А.Б., Серебренников А.Н. О механизме резкого понижения температуры поверхности в северо-западной части Черного моря и у побережья Крыма // Метеорология и гидрология. 2023а. № 2. С. 31–40. https://doi.org/10.52002/0130-2906-2023-2-31-40
- Полонский А.Б., Серебренников А.Н. О положительных аномалиях температуры поверхности моря в северной части Черного моря и у юго-западного побережья Крыма // Метеорология и гидрология. 2023б (в печати).
- Полонский А.Б., Шокурова И.Г. Белокопытов В.Н. Десятилетняя изменчивость температуры и солености в Черном море // Морской гидрофизический журн. 2013. № 6. С. 27–41.
- Станичная Р.Р., Станичный С.В. Апвеллинги Чёрного моря // Соврем. пробл. дист. зондир. Земли из космоса. 2021. Т. 18. № 4. С. 195–207. https://doi.org/10.21046/2070-7401-2021-18-4-195-207
- Bengil F., Mavruk S. Warming in Turkish Seas: Comparative Multidecadal Assessment // Turkish J. Fisheries and Aquatic Sciences. 2018. № 19(1). P. 51–57. https://doi.org/10.4194/1303-2712-v19_01_06
- CMEMS. URL: https://www.copernicus.eu (date of access: 20.12.2022).
- ERA5. Climate Data Store. URL: https://cds.climate.copernicus.eu/cdsapp (date of access: 20.12.2022).
- IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change [Field C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, UK, and New York, NY, USA, 2012, 582 p.
- Jacox M.G., Alexander M.A., Amaya D., et al. Global seasonal forecasts of marine heat-waves // Nature. 2022. V. 604. P. 486–490. https://doi.org/10.1038/s41586-022-04573-9
- Jolliffe I.T., Cadima J. Principal component analysis: a review and recent developments // Phil. Trans. R. Soc. 2016. 374: 20150202. https://doi.org/10.1098/rsta.2015.0202
- Lima L., Ciliberti S.A., Aydogdu A. et al. Climate Signals in the Black Sea from a Multidecadal Eddy-Resolving Reanalysis // Front. Mar. Sci. 2021. 8:710973. https://doi.org/10.3389/fmars.2021.710973
- Maslova V.N., Voskresenskaya E.N., Lubkov A.S. et al. Intense Cyclones in the Black Sea Region: Change, Variability, Predictability and Manifestations in the Storm Activity // Sustainability. 2020. 12 (11). 4468. https://doi.org/10.3390/su12114468
- Miladinova S., Stips A., Garcia-Gorriz E., and Macias Moy D. Black Sea thermohaline properties: Long-term trends and variations // J. Geophys. Res. Oceans. 2017. № 122(7). P. 5624–5644. https://doi.org/10.1002/2016JC012644
- Remote Sensing Systems. URL: https://www.remss.com (date of access: 20.12.2022).
- Oguz T., Besiktepe S. Observations on the Rim Current Structure, CIW Formation, and Transport in the Western Black Sea // Deep-Sea Research. 1999. V. 1. № 46. P. 1733–1753. https://doi.org/10.1016/S0967-0637(99)00028-X
- Sakalli A., Basusta N. Sea surface temperature change in the Black Sea under climate change: A simulation of the sea surface temperature up to 2100 // Int. J. Climatol. 2018. V. 38. P. 4687–4698. https://doi.org/10.1002/joc.5688
- Salihoglu B., Arkin S.S., Akoglu E., Fach B.A. Evolution of Future Black Sea Fish Stocks under Changing Environmental and Climatic Conditions // Front. Mar. Sci. 2017. 4: 339. https://doi.org/10.3389/fmars.2017.00339
- Shapiro G.I., Aleynik D.L. and Mee L.D. Long term trends in the sea surface temperature of the Black Sea // Ocean Sci. 2010. № 6. P. 491–501. https://doi.org/10.5194/os-6-491-2010
- Stanev E.V. Understanding Black-Sea Dynamics: Overview of Recent Numerical Modeling // Oceanography. 2005. V. 18. № 2. P. 56–75. https://doi.org/10.5670/oceanog.2005.42
Қосымша файлдар
