Identification of Zones of Hydrothermally Altered Rocks Using WorldView-2 Data at the Talman Site (Talmanskaya Area, South-Eastern Transbaikal, Russia)

封面

如何引用文章

全文:

详细

The work is aimed at the practical application of satellite imagery data for the selection of promising areas for geological exploration in conditions of medium-low mountain relief and a sharply continental climate. The results of processing and analysis of WorldView-2 data within the Talmanskaya area are presented in order to identify zones of hydrothermal-metasomatic changes in rocks that are promising for the identification of gold-polymetallic mineralization. The choice of the study area is due to sufficient geological knowledge and the absence of technogenic formations that affect the result of processing satellite imagery materials. To increase the spectral information content of the WorldView-2 data, the spectral channel ratio method was used, as a result of which a pseudo-color RGB composite was created that displays the spectral characteristics of objects on the Earth’s day surface, in particular, minerals of the oxide/hydroxide group containing transitional iron ions (Fe3+ and Fe3+/Fe2+). Comparison of the results of processing satellite data along with geological information made it possible to identify spectral anomalies as indicators of the presence of near-ore changes, which are an important search criterion for hydrothermal deposits.

作者简介

V. Ishmukhametova

Federal State Budgetary Institution of Science Institute of Geology of Ore Deposits, Petrography,
Mineralogy and Geochemistry of the Russian Academy of Sciences (IGEM RAS)

编辑信件的主要联系方式.
Email: geoivt@mail.ru
Russia, Moscow

I. Nafigin

Federal State Budgetary Institution of Science Institute of Geology of Ore Deposits, Petrography,
Mineralogy and Geochemistry of the Russian Academy of Sciences (IGEM RAS)

Email: geoivt@mail.ru
Russia, Moscow

S. Ustinov

Federal State Budgetary Institution of Science Institute of Geology of Ore Deposits, Petrography,
Mineralogy and Geochemistry of the Russian Academy of Sciences (IGEM RAS)

Email: geoivt@mail.ru
Russia, Moscow

D. Lapaev

Federal State Budgetary Institution of Science Institute of Geology of Ore Deposits, Petrography,
Mineralogy and Geochemistry of the Russian Academy of Sciences (IGEM RAS)

Email: geoivt@mail.ru
Russia, Moscow

V. Minaev

Federal State Budgetary Institution of Science Institute of Geology of Ore Deposits, Petrography,
Mineralogy and Geochemistry of the Russian Academy of Sciences (IGEM RAS)

Email: geoivt@mail.ru
Russia, Moscow

V. Petrov

Federal State Budgetary Institution of Science Institute of Geology of Ore Deposits, Petrography,
Mineralogy and Geochemistry of the Russian Academy of Sciences (IGEM RAS)

Email: geoivt@mail.ru
Russia, Moscow

参考

  1. Асмодъяров И.А., Брель А.И., Синявин В.И. и др. Поисково-ревизионные работы на золото-полиметаллическое оруденение в северной части Кличкинского золотополиметаллического рудного района (Забайкальский край) за 2012–2014 гг. Объект № 111-27(102-24). Отчет по Гос. контракту № К-01/12-6 от 20.03.12 г. Росгеолфонд № 515591. М., 2015.
  2. Водяницкий Ю.Н. Соединения железа и их роль в охране почв. М.: ГНУ Почвенный институт им. В.В. Докучаева Россельхозакадемии, 2010. 155 с.
  3. Зонн С.В. Железо в почвах (генетичнсекие и географические аспекты). М.: Наука, 1982. 209 с.
  4. Калашников В.А., Лиханов В.Д., Четвериков М.Е. и др. Поисковые работы на золото-полиметаллическое оруденение в пределах Савва-Борзинского рудного узла (Забайкальский край). Росгеолфонд № 536243. М., 2019.
  5. Лукин А.В. Паспорт № 205/5676, Объект учета Талман, 2020. 8 с.
  6. Миляев С.А. Литохимические поиски полиметаллических месторождений. М.: Недра, 1988. 183 с.
  7. Назаров А.А. Отчет о результатах работ по объекту № 630-17(111-23). Поисковые работы с оценкой песрпектив золото-полиметаллического оруденения основных руцдных районов и узлов Приаргунской структурно-формационной зоны (Забайкальский край). Росгеолфонд № 528679. М.: 2017.
  8. Тарабарко А.Н. Закономерности размещения золото-полиметаллического оруденения Мулинской рудно-магматической системы // Геология, поиски и разведка рудных полезных ископаемых. 2000. № 24. С. 37–150.
  9. Abdelsalam M., Stern R. Mapping gossans in arid regions with landsat TM and SIR-C images, the Beddaho Alteration Zone in northern Eritrea // J. Afr. Earth Sci. 2000. 30(4):903–916. https://doi.org/10.1016/S0899-5362(00)00059-2
  10. Aydal D., Ardal E., Dumanlilar O. Application of the Crosta technique for alteration mapping of granitoidic rocks using ETM + data: case study from eastern Tauride belt (SE Turkey) // Int. J. Remote Sens. 2007. 28(17):3895–3913. https://doi.org/10.1080/01431160601105926
  11. Bedini E. Application of WorldView-3 imagery and ASTER TIR data to map alteration minerals associated with the Rodalquilar gold deposits, southeast Spain // Adv. Space Res. 2019. 63. 3346–3357. https://doi.org/10.1016/j.asr.2019.01.047
  12. Clark R.N. Spectroscopy of rock and minerals and principles of spectroscopy. In Remote Sensing for the Earth Sciences: Manual of Remote Sensing 3; Rencz A.N., Ed.; John Wiley Sons: New York, NY, USA, 1999. P. 3–58.
  13. Crowley J.K., Brickey D.W., Rowan L.C. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images // Remote Sens. Environ. 1989. 29. 121–134. https://doi.org/10.1016/0034-4257(89)90021-7
  14. Eldosouky A.M., Sehsah H., Elkhateeb S.O., Pour A.B. Integrating aeromagnetic data and Landsat-8 imagery for detection of post-accretionary shear zones controlling hydrothermal alterations: The Allaqi-Heiani Suture zone, South Eastern Desert, Egypt // Adv. Space Res. 2020. 65. 1008–1024. https://doi.org/10.1016/j.asr.2019.10.030
  15. Fraser S.J., Green A.A. A software defoliant for geological analysis of band ratios // Int. J. Remote Sens. 1987. 8. 525–532.
  16. Gaffey S.J. Spectral reflectance of carbonate minerals in the visible and near-infrared (0.35–2.55 microns): Calcite, aragonite, and dolomite // Am. Mineral. 1986. 71. 151–162.
  17. Hunt G.R. Spectral signatures of particulate minerals in the visible and near infrared // Geophysics. 1977. 42. 501–513. https://doi.org/10.1190/1.1440721
  18. Hunt G.R., Ashley R.P. Spectra of altered rocks in the visible and near-infrared // Econ. Geol. 1979. 74. 1613–1629.
  19. Inzana J., Kusky T., Higgs G., Tucker R. Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar. J Afr Earth Sci. 2003. 37:59–72. https://doi.org/10.1016/S0899-5362(03)00071-X
  20. Iwasaki A., Tonooka H. Validation of a crosstalk correction algorithm for ASTER/SWIR. IEEE Trans // Geosci. Remote Sens. 2005. 43. 2747–2751. https://doi.org/10.1109/TGRS.2005.855066
  21. Kalinowski A., Oliver S. ASTER Mineral Index Processing Manual; Technical Report; Geoscience Australia: Canberra, Australia, 2004. Available online: http://www.ga.gov.au/image_cache/GA7833.pdf (accessed on 12 August 2018)
  22. Kusky T.M., Ramadan T.M. Structural controls on Neoproterozoic mineralization in the South Eastern Desert, Egypt: an integrated field, Landsat TM, and SIR-C/X SAR approach // J Afr Earth Sci. 2002. 35:107–121. https://doi.org/10.1016/S0899-5362(02)00029-5
  23. Mars J.C. Mineral and Lithologic Mapping Capability of WorldView 3 Data at Mountain Pass, California, Using True-and False-Color Composite Images, Band Ratios, and Logical Operator Algorithms // Econ. Geol. 2018. 113. 1587–1601. https://doi.org/10.5382/econgeo.2018.4604
  24. Okada K., Segawa K., Hayashi I. Removal of the vegetation effect from LANDSAT TM and GER imaging spectroradiometer data. ISPRS J Photogramm Remote Sens. 1993. 48(6):16–27. https://doi.org/10.1016/0924-2716(93)90052-O
  25. Podwysocki M.H., Mimms D.L., Salisbury J.W., Bender L.V., Jones O.D. Analysis of Landsat-4 TM data for lithologic and image mapping purpose, Proceedings of Landsat-4 Science Investigations Summary. Greenbelt, Maryland. 1984. 2:35–39.
  26. Pour A.B., Hashim M., Hong J.K., Park Y. Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: North-eastern Graham Land, Antarctic Peninsula // Ore Geol. Rev. 2019. 108. 112–133. https://doi.org/10.1016/j.oregeorev.2017.07.018
  27. Pour A.B., Park Y., Crispini L., Läufer A., Kuk Hong J., Park T.-Y.S., Zoheir B., Pradhan B., Muslim A.M., Hossain M.S. et al. Mapping Listvenite Occurrences in the Damage Zones of Northern Victoria Land, Antarctica Using ASTER Satellite Remote Sensing Data // Remote Sens. 2019. 11. 1408. https://doi.org/10.3390/rs11121408
  28. Pour A.B., Park Y., Park T.S., Hong J.K., Hashim M., Woo J., Ayoobi I. Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica // Polar Sci. 2018. 16. 23–46. https://doi.org/10.1016/j.polar.2018.02.004
  29. Pour A.B., Park T.S., Park Y., Hong J.K., Muslim A., Läufer A., Crispini L., Pradhan B., Zoheir B., Rahmani O., Hashim M., Hossain M.S. Landsat-8, Advanced Spaceborne Thermal Emission and Reflection Radiometer, and WorldView-3 Multispectral Satellite Imagery for Prospecting Copper-Gold Mineralization in the Northeastern Inglefield Mobile Belt (IMB), Northwest Greenland // Remote Sens. 2019. 11. 2430. https://doi.org/10.3390/rs11202430
  30. Rajendran S., Sobhi N. ASTER capability in mapping of mineral resources of arid region: A review on mapping of mineral resources of the Sultanate of Oman // Ore Geol. Rev. 2018. 88. 317–335. https://doi.org/10.1016/j.oregeorev.2018.04.014
  31. Rajesh H.M. Mapping Proterozoic unconformity-related uranium deposits in the Rockole area, Northern Territory, Australia using Landsat ETM+ // Ore Geol Rev. 2008. 33:382–396. https://doi.org/10.1016/j.oregeorev.2007.02.003
  32. Ramadan T.M., Abdel Fattah M.F. Characterization of gold mineralization in Garin Hawal area, Kebbi State, NW Nigeria, using remote sensing // Egypt J Remote Sens Space Sci. 2010. 13:153–163. https://doi.org/10.1016/j.ejrs.2009.08.001
  33. Rowan L.C., Goetz A.F.H., Ashley R.P. Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images // Geophysics. 1977. 42(3):522–535. https://doi.org/10.1190/1.1440723
  34. Sabins F.F. Remote Sensing Principles and Interpretation. 3. New York, USA: Freeman & Co, 1996.
  35. Sabins F.F. Remote sensing strategies for mineral exploration. In: Rencz AE, editor / Remote Sensing for the Earth Sciences. New York: John Wiley & Sons, Inc. 1997. P. 375–447.
  36. Segal D. Theoretical Basis for Differentiation of Ferric-Iron Bearing Minerals, Using Landsat MSS Data / Proceedings of Symposium for Remote Sensing of Environment, 2nd Thematic Conference on Remote Sensing for Exploratory Geology, Fort Worth, TX (1982). 949–951.
  37. Sun Y., Tian S., Di B. Extracting mineral alteration information using Worldview-3 data // Geosci. Front. 201. 8. 1051–1062. https://doi.org/10.1016/j.gsf.2016.10.008
  38. Salehi T., Tangestani M. Large-scale mapping of iron oxide and hydroxide minerals of Zefreh porphyry copper deposit, using Worldview-3 VNIR data in the Northeastern Isfahan, Iran // International Journal of Applied Earth Observation and Geoinformation. December 2018. V. 73. P. 156–169.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (5MB)
3.

下载 (3MB)
4.

下载 (498KB)
5.

下载 (4MB)
6.

下载 (4MB)

版权所有 © В.Т. Ишмухаметова, И.О. Нафигин, С.А. Устинов, Д.С. Лапаев, В.А. Минаев, В.А. Петров, 2023