Developing the Model of the Morphological Pattern for Thermokarst Plains with Fluvial Erosion Involving Remote Sensing Data

Resumo

The paper reports a new variant of the model of the morphological pattern for thermokarst plains with fluvial erosion involving numerous remote sensing data. This variant of the model takes into account different trends of the thermokarst processes for watershed plains and lowered bottoms of khasyreis (drained thermokarst lakes). The given model is tested at eight key sites located in different physiography, climate and geocryology. Testing was based on the high-resolution remote sensing data. The developed model is verified with a statistical analysis of lake area distributions within both watershed plain surface and lowered bottoms of khasyreis, demonstrating a state of dynamic balance in the course of emergence, growth and drainage of the thermokarst lakes. The analysis shows that the morphological pattern of the thermokarst plains with fluvial erosion changes evolutionarily, with reducing the area of the main watershed surface according to a dependence close to exponential; the specific type of the dependence results primarily from the ratio of the lake generation density and the location density of the fluvial sources.

Sobre autores

A. Victorov

Sergeev Institute of Environmental Geoscience RAS

Autor responsável pela correspondência
Email: vic_as@mail.ru
Russia, Moscow

V. Kapralova

Sergeev Institute of Environmental Geoscience RAS

Email: vic_as@mail.ru
Russia, Moscow

T. Orlov

Sergeev Institute of Environmental Geoscience RAS

Email: vic_as@mail.ru
Russia, Moscow

Bibliografia

  1. Вельмина Н.А. К вопросу о происхождении замкнутых (аласных) впадин Центральной Якутии // Изв. АН СССР. Сер. геогр. 1957. № 2. С. 97–106.
  2. Викторов А.С. Математическая модель термокарстовых озерных равнин как одна из основ интерпретации материалов космических съемок// Исслед. Земли из космоса. 1995. № 5. С. 42–50.
  3. Викторов А.С. Основные проблемы математической морфологии ландшафта. М., Наука, 2006, 252 с.
  4. Викторов А.С., Капралова В.Н., Орлов Т.В., Трапезникова О.Н., Архипова М.В., Березин П.В., Зверев А.В., Садков С.А., Панченко Е.Г. Математическая морфология ландшафтов криолитозоны. М., РУДН, 2016, 232 с.
  5. Викторов А.С., Капралова В.Н., Архипова М.В. Моделирование развития морфологической структуры эрозионно-термокарстовых равнин с использованием материалов дистанционных съемок)// Исслед. Земли из космоса. 2019. № 2. С. 55–64.
  6. Викторов А.С., Орлов Т.В., Садков С.А., Трапезникова О.Н. Использование подходов математической морфологии ландшафта при дистанционной оценке природных опасностей// Геоэкология. Инженерная геология, гидрогеология, геокриология. 2019. Вып. 5. С. 61–73.
  7. Викторов А.С., Орлов Т.В., Трапезникова О.Н., Капралова В.Н., Архипова М.В. Закономерности распределения площадей озер эрозионно-термокарстовых равнин // Докл. Российской академии наук. Науки о Земле. 2020. Т. 491. № 2. С. 108–111.
  8. Викторов А.С., Орлов Т.В., Капралова В.Н., Трапезникова О.Н., Зверев А.В. Моделирование вариантов развития морфологической структуры эрозионно-термокарстовых равнин. // Криосфера земли. 2021. Т. 25. № 1. С. 45–54.
  9. Гравис Г.Ф. Роль склоновых процессов в эрозионно-термокарстовом расчленении аллювиальных равнин Якутии // Материалы VIII Всеcoюз. междувед. сов. по геокриологии. Якутск, 1966. Вып. 6. С. 67–75.
  10. Кравцова В.И., Быстрова А.Г. Изучение изменений распространения термокарстовых озер России по разновременным космическим снимкам // Криосфера Земли. 2009. Т. XV. № 2. С. 16–26.
  11. Павлов П.Д. К вопросу о происхождении озерно-аласных котловин северо-восточной части Лено-Вилюйского междуречья // Уч. записки ЯГУ. Якутск, 1965. Вып. 14. С. 53–55.
  12. Полищук В.Ю., Полищук Ю.М. Геоимитационное моделирование полей термокарстовых озер в зонах мерзлоты. Ханты-Мансийск, УИП ЮГУ, 2013, 129 с.
  13. Суходровский В.Л. Особенности морфогенеза современных и древних аллювиальных в условиях сурового климата // Проблемы геокриологии. Новосибирск: Наука, 1973. С. 96–107.
  14. Grosse G., Jones B. M., Nitze I. et al. Massive thermokarst lake area loss in continuous ice-rich permafrost of the northern Seward Peninsula, Northwestern Alaska, 1949–2015 // XI. International Conference on Permafrost – Book of Abstracts (Potsdam, 20–24 June 2016), Potsdam, Germany, 2016. P. 739–740.
  15. Morgenstern A., Grosse G., Günther F, Fedorova, I., Schirrmeister L. Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta. The Cryosphere Discussions, 2011, 5. https://doi.org/10.5194/tcd-5-1495-2011
  16. Victorov A.S. Mathematical Models of Thermokarst Erosion Plains // GIS and Spatial Analysis. Proc. of IAMG, Toronto, Canada, 2005. V. I. P. 62–67.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (3MB)
3.

Baixar (3MB)
4.

Baixar (803KB)
5.

Baixar (3MB)
6.

Baixar (60KB)

Declaração de direitos autorais © А.С. Викторов, В.Н. Капралова, Т.В. Орлов, 2023