Retrieval of Cloud Liquid Water from MSU-GS Data On-Board Arctica-M No. 1
- Authors: Filei A.A.1, Shamilova Y.A.1
-
Affiliations:
- Far-Eastern Center of State Research Center for Space Hydrometeorology “Planeta”
- Issue: No 3 (2023)
- Pages: 70-80
- Section: ФИЗИЧЕСКИЕ ОСНОВЫ ИССЛЕДОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА
- URL: https://journals.eco-vector.com/0205-9614/article/view/659196
- DOI: https://doi.org/10.31857/S0205961423030028
- EDN: https://elibrary.ru/TYJFUD
- ID: 659196
Cite item
Full Text
Abstract
The paper presents the method for cloud water path retrieval from daytime MSU-GS measurements on board the Russian hydrometeorological satellite Arktika-M No. 1. The presented technique based on the physical principles of the interaction of electromagnetic radiation with cloud particles at wavelengths of 0.55 and 4.0 μm. Cloud water path estimates obtained from the MSU-GS radiometer where compared with similar estimates from the AMSU/MHS and AHI radiometer data. Based on the results of the comparison, the required estimates of the cloud water path of drop clouds are within the permissible limits of the measurement error, not exceeding 50 g/m2. At the same time, due to its design features, the MSU-GS radiometer does not allow retrieving the cloud water path of ice clouds with the required accuracy. On average, the cloud water path estimate of ice clouds according to the MSU-GS data is underestimated by 110 g/m2, and the root-mean-square error is 158 g/m2 compared to the AHI radiometer data. The obtained estimates of the cloud water path introduced into the geographic information system Arktika-M, which provides access to the Arktika-M No. 1 data and the results of their thematic processing in a near real time mode.
Keywords
About the authors
A. A. Filei
Far-Eastern Center of State Research Center for Space Hydrometeorology “Planeta”
Author for correspondence.
Email: andreyvm-61@mail.ru
Russia, Khabarovsk
Yu. A. Shamilova
Far-Eastern Center of State Research Center for Space Hydrometeorology “Planeta”
Email: andreyvm-61@mail.ru
Russia, Khabarovsk
References
- Андреев А.И., Шамилова Ю.А. Детектирование облачности по данным КА Himawari-8 с применением сверточной нейронной сети // Исслед. Земли из Космоса. 2021. № 2. С. 42−52.
- Мазин И.П., Хргиан А.Х. Облака и облачная атмосфера. Справочник // Л.: Гидрометиздат. 1989. 647 с.
- Матвеев Л.Т. Курс общей метеорологии. Физика атмосферы // Л.: Гидрометеоиздат. 1984. 751 с.
- Филей А.А. Определение фазового состояния облачности по данным спутникового радиометра МСУ-МР космического аппарата “Метеор-М” № 2 // Оптика атмосферы и океана. 2019 Т. 32. № 5. С. 376−380.
- Хартов В.В., Мартынов М.Б., Бабышкин В.Е., Москатиньев И.В., Митькин А.С. Новая высокоэллиптическая космическая система “АРКТИКА” // Вестник НПО им. С.А. Лавочкина. 2014. № 3. С. 104−109.
- Baum B.A., Heymsfield A.J., Yang P., Bedka S.T. Bulk scattering models for the remote sensing of ice clouds. Part I: Microphysical data and models // J. Applied Meteorology and Climatology. 2005. V. 44. P. 1885–1895.
- Baum B.A., Yang P., Heymsfield A.J., Platnick S., King M.D., Hu Y-X., Bedka S.T. Bulk scattering models for the remote sensing of ice clouds. Part II: Narrowband models // J. Applied Meteorology and Climatology. 2005. V. 44. P. 1896–1911.
- Bennartz R. Global assessment of marine boundary layer cloud droplet number concentration from satellite // J. Geophys Res: Atmos. 2007. V. 112(D2). 16 p.
- Buras R., Dowling T., Emde C. New secondary-scattering correction in DISORT with increased efficiency for forward scattering // J. Quantitative Spectroscopy and Radiative Transfer. 2011. V. 112(12). P. 2028–2034.
- Gasteiger J., Emde C., Mayer B., Buras R., Buehler S.A., Lemke O. Representative wavelengths absorption parameterization applied to satellite channels and spectral bands // J. Quantitative Spectroscopy and Radiative Transfer. 2014. V. 148. P. 99–115.
- Han Q., Rossow W.B., Lacis A.A. Near-global survey of effective droplet radii in liquid water clouds using ISCCP data // J. Climate. 1994. V. 7. P. 465–497.
- Heymsfield A.J., Matrosov S., Baum B. Ice Water Path-Optical Relationships for Cirrus and Deep Stratiform Ice Cloud Layers // J. Appl. Meteor. 2003. V. 42. № 10. P. 1369–1390.
- Hu Y.X., Stamnes K. An accurate parameterization of the radiative properties of water clouds suitable for use in climate models // J. Climate. 1993. V. 6. P. 728–742.
- Mayer B., Kylling A., Emde C., Buras R., Hamann U., Gasteiger J., Richter B. // LibRadtran user’s guide. 2017. 155 p.
- Platnick S. Vertical photon transport in cloud remote sensing problems // J. Geophys. Res. 2000. V. 105. № D18. P. 22919–22935.
- Platnick S., King M.D., Ackerman S.A., Menzel W.P., Baum B.A., Riedi J.C., Frey R.A. The MODIS cloud products: Algorithms and examples from Terra // IEEE Trans. Geosci. Remote Sensing. 2003. V. 41. P. 459–473.
- Roebeling R.A., Feijt A.J., Stammes P. Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17 // J. Geophys. Res.: Atmos. 2006. V. 111. № D20210. 16 p.
- Walther A., Heidinger A. Implementation of the Daytime Cloud Optical and Microphysical Properties. Algorithm (DCOMP) in PATMOS-x // J. Applied Meteorology and Climatology. 2012. V. 51. № 7. P. 1371–1390.
Supplementary files
