Image of Mantle Plume Processes in the Satellite Magnetic Field Over Africa Territory

Cover Page

Cite item

Full Text

Abstract

The spatial distribution of the lithospheric magnetic anomalies field carries information about its sources – deep tectonic structures – and reflects the processes occurring at mantle depths. Based on the geomagnetic data measured by the CHAMP satellite at an observation altitude of ~290 km, the lithospheric magnetic field parameters over the territory of the African continent were calculated. A lot of maps of the lithospheric magnetic anomalies field total intensity Ta based on various scales and degrees have been constructed. The distribution of Ta over the territories of South and East Africa is given. An analysis of lithospheric magnetic anomalies maps over the territories of African superplume influence showed good agreement with the existing hypothesis about the mantle superplume flow intrusion from the lower mantle to the upper mantle in the northeast direction and its further spread under the East African rift zone. The obtained parameters of the anomalous lithospheric magnetic field contain information about the magnetization of the lithosphere deep layers, reflecting the magnetic properties of large regional tectonic structures and the topography of the Curie surface, which is associated with the geothermal regime and tectonic setting at different levels of the lithosphere. The work shows the perspective of the geomagnetic field satellite observations using in the study of the active zones tectonics and mapping of deep lithosphere heterogeneities in hard-to-reach areas.

About the authors

L. M. Abramova

Geoelectromagnetic Research Centre, Shmidt Institute of Physics of the Earth, Russian Academy of Sciences

Author for correspondence.
Email: labramova@igemi.troitsk.ru
Russia, Moscow, Troitsk

I. M. Varentsov

Geoelectromagnetic Research Centre, Shmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: labramova@igemi.troitsk.ru
Russia, Moscow, Troitsk

D. Yu. Abramova

Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences

Email: labramova@igemi.troitsk.ru
Russia, Moscow, Troitsk

References

  1. Абрамова Д.Ю., Абрамова Л.М. Литосферные магнитные аномалии на территории Сибири (по измерениям спутника СНАМР) // Геология и геофизика. 2014. Т. 55. С. 1081–1092.
  2. Абрамова Д.Ю., Абрамова Л.М., Варенцов Ив.М., Филиппов С.В. Исследование литосферных магнитных аномалий Гренландско-Исландско-Фарерского вулканического комплекса по данным измерений на спутнике CHAMP // Геофизические исследования. 2019. Т. 20. № 2. С. 5–18. https:// doi.org/10.21455/gr2019.2-1
  3. Абрамова Д.Ю., Филиппов С.В, Абрамова Л.М. О возможностях использования спутниковых геомагнитных наблюдений в исследовании геолого-тектонического строения литосферы // Исслед. Земли из космоса. 2020а. № 2. С. 69–81. https://doi.org/10.31857/S0205961420010029
  4. Абрамова Д.Ю., Абрамова Л.М., Варенцов Ив.М., Лозовский И.Н. Отражение тектоники Восточной Европы в литосферных магнитных аномалиях спутниковой миссии CHAMP // Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей: Материалы 47-й сессии Межд. сем. им. Д.Г. Успенского – В.Н. Страхова. Воронеж: Научная книга. 2020б. С. 3–7.
  5. Абрамова Л.М., Абрамова Д.Ю. Отражение процессов мантийного плюмового магматизма в литосферных магнитных аномалиях, полученных по данным спутника CHAMP // Исслед. Земли из космоса. 2021. № 4. С. 3–14. https://doi.org/10.31857/S0205961421040023
  6. Борисенко А.C., Сотников В.И., Изоx А.Э., Поляков Г.В., Оболенский А.А. Пермотриасовое оруденение Азии и его связь с проявлением плюмового магматизма // Геология и геофизика. 2006. Т. 47. № 1. С. 166–182.
  7. Добpецов Н.Л. Геологические следствия термохимической модели плюмов // Геология и геофизика. 2008. Т. 49. № 7. С. 587–604.
  8. Ярмолюк В.В., Коваленко В.И., Кузьмин М.И. Северо-Азиатский суперплюм в фанерозое: магматизм и глубинная геодинамика // Геотектоника. 2000. № 6. С. 3–29.
  9. Bagley B., Nyblade A. Seismic anisotropy in eastern Africa, mantle flow, and the African superplume // Geophys. Res. Let. 2013. V. 40. P. 1500–1505. https://doi.org/10.1002/grl.50315
  10. Davies G., Pribac F., Mesozoic seafloor subsidence and the Darwin rise: past and present // American Geophys. Union Monograph. 1993. V. 77. P. 39–52.
  11. Forte A., Qu’er’e S., Moucha R., Simmons N., Grand S., Mitrovica J., Rowley D. Joint seismic-geodynamic-mineral physical modeling of African geodynamics: a reconciliation of deep-mantle convection with surface geophysical constraints // Earth Planet. Sci. Lett. 2010. V. 295. P. 329–341.
  12. Fouch M.J., James D.E., Van Decar J., van der Lee S., the Kaapvaal Seismic Group. Mantle seismic structure beneath the Kaapvaal and Zimbabwe cratons // S. Afr. J. Geol. 2004. V. 107. P. 33–44. https://doi.org/10.2113/107.1-2.33
  13. Hansen S., Nyblade A., Benoit M. Mantle structure beneath Africa and Arabia from adaptively parameterized P-wave tomography: Implications for the origin of Cenozoic Afro-Arabian tectonism // Earth Planet. Sci. Lett. 2012. V. 319–320. P. 23–34. https://doi.org/10.1016/j.epsl.2011.12.023
  14. Hansen S., Nyblade A. The deep seismic structure of the Ethiopia/Afar hotspot and the African superplume // Geophys. J. Int. 2013. https://doi.org/10.1093/gji/ggt116
  15. Loper D.E. Mantle plumes // Tectonophysics. 1991. V. 187. P. 373–384.
  16. Maruyama Sh. Plume tectonics // Geol. Soc. Japan. 1994. V. 100. P. 24–34.
  17. Maus S., Barckhausen U., Berkenbosch H., Bournas N., Brozena J., Childers V., Dostaler F., Fairhead J.D., Finn C., von Frese R.R.B., Gaina C., Golynsky S., Kucks R., Luhr H., Milligan P., Mogren S., Muller R.D., Olesen O., Pilkington M., Saltus R., Schreckenberger B., The’bault E., Caratori Tontini F. EMAG2: A 2–arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements // Geochem. Geophys. Geosyst. 2009. V. 10 (8). Q08005. https://doi.org/10.1029/2009GC002471
  18. Montelli R., Nolet G., Dahlen F.A., Masters G. A catalogue of deep mantle plumes: New results from finite-frequency tomography // Geochem. Geophys. Geosyst. 2006. V. 7. Q11007. https://doi.org/10.1029/2006GC001248
  19. Morgan, W. Convection plumes in the lower mantle // Nature. 1971. V. 230. P. 42–43.
  20. Pirajno F. Ore deposits and mantle plumes. Kluwer Academic Publishers. 2004. 556 p.
  21. Reigber C., Lühr H., Schwintzer P. CHAMP Mission Status // Advances in Space Research 2002. V.30. P. 129–134. https:// doi.org/10.1016/S0273-1177(02)00276-4.
  22. Ritsema J., van Heijst H., Woodhouse J. Complex shear wave velocity structure beneath Africa and Iceland // Science. 1999. V. 286. P. 1925–1928.
  23. Ritsema J., Allen R. The elusive mantle plume // Earth Planet. Sci. Lett. 2003. V. 207. P. 1–12.
  24. Simmons N., Forte A., Grand S. Thermochemical structure and dynamics of the African superplume // Geophys. Res. Lett. 2007. V. 34(2). L02301. https://doi.org/10.1029/2006GL028009
  25. Wessel P., Smith W.H.F. The generic mapping tools // Technical reference and cookbook version 4.2. 2007. http://gmt.soest.hawaii.edu.
  26. Wilson J. A possible origin of the Hawaiian Islands // Canadian J. Physics. 1963. V. 41. P. 863–870.
  27. Zhao Dapeng. Multiscale seismic tomography and mantle dynamics // Gondwana Research. 2009. V. 15. P. 297–323.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (345KB)
3.

Download (819KB)
4.

Download (4MB)
5.

Download (2MB)
6.

Download (1MB)
7.

Download (2MB)
8.

Download (1MB)

Copyright (c) 2023 Л.М. Абрамова, И.М. Варенцов, Д.Ю. Абрамова