Monitoring of mud-volcanic fluid manifestations in the Caspian Sea according to multispectral satellite data

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

In this paper, 180 cases of mud-volcanic fluid (MVF) manifestations on the marine surface and in the near-surface layer of the Caspian Sea in the area of Cheleken-Livanovsk Rise in 2019-2021 were detected and studied based on the results of satellite monitoring using multispectral satellite data. For the areas of MVF manifestations, the reflectance was analyzed in 7 spectral bands of the Landsat-8 and Sentinel-2A/B equipment in the wavelength range of 0.44–2.2 µm. Significant positive contrasts in Violet (~0.44 µm), Blue (~0.48 µm), and Green (~0.56 µm) spectral bands due to the presence of suspended matter and gas bubbles in the near-surface layer of the water column were detected in the areas of MVF manifestations. Mathematic expectations of Weber contrasts in those spectral bands varied in a range between С~0.47 and С~0.77. Complex analysis of spatiogeometric MVF manifestation characteristics and region bathymetry map allowed us to find coordinates of emission sources that corresponded to the peak of the mud-volcanic shoal.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Bondur

AEROCOSMOS Research Institute for Aerospace Monitoring

Хат алмасуға жауапты Автор.
Email: office@aerocosmos.info
Ресей, Moscow

V. Chernikova

AEROCOSMOS Research Institute for Aerospace Monitoring

Email: office@aerocosmos.info
Ресей, Moscow

V. Zamshin

AEROCOSMOS Research Institute for Aerospace Monitoring

Email: office@aerocosmos.info
Ресей, Moscow

Әдебиет тізімі

  1. Aliev A.D. Griazevoi` vulkanizm Iuzhno-Kaspii`skogo neftegazonosnogo bassei`na // Geologiia i polezny`e iskopaemy`e mirovogo okeana. 2006 (a). № 3. Pp. 35–51.
  2. Aliev A.I. Griazevy`e vulkany` ‒ ochagi periodicheskoi` gazogidrodinamicheskoi` razgruzki by`stropogruzhaiushchikhsia osadochny`kh bassei`nov i vazhny`e kriterii prognoza gazonosnosti bol`shikh glubin // Geologiia nefti i gaza. 2006 (b). № 5. Pp. 26–32.
  3. Ae`rokosmicheskii` monitoring ob``ektov neftegazovogo kompleksa / pod red. V.G. Bondura. Moskva: Nauchny`i` mir, 2012. 558 p.
  4. Bogoiavlenskii` V.I. Vy`brosy` gaza i nefti na sushe i akvatoriiakh Arktiki i Mirovogo okeana // Burenie i neft`. 2015. № 6. Pp. 4–10.
  5. Bondur V.G., Kuznetsova T.V. Detecting Gas Seeps in Arctic Sea Water Areas Using Remote Sensing Data. Izvestiya. Atmospheric and Oceanic Physics, 2015. Vol. 51. No. 9. Рр. 1060‒1072. doi: 10.1134/S0001433815090066.
  6. Bondur V.G. Aerospace Methods and Technologies for Monitoring Oil and Gas Areas and Facilities // Izvestiya, Atmospheric and Oceanic Physics. 2011. Vol. 47. No. 9. P. 1007‒1018. doi: 10.1134/S0001433811090039.
  7. Bondur V.G., Grebenyuk Yu.V., Sabinin K.D. The spectral characteristics and kinematics of short-period internal waves on the Hawaiian shelf // Izvestiya, Atmospheric and Oceanic Physics. 2009. Vol. 45. No. 5. P. 598‒607. doi: 10.1134/S0001433809050077.
  8. Bondur V.G., Filatov N.N., Grebenyuk Yu.V., Dolotov Yu.S., Zdorovennov R.E., Petrov M.P., Tsidilina M.N. Studies of hydrophysical processes during monitoring of the anthropogenic impact on coastal basins using the example of Mamala Bay of Oahu Island in Hawaii // Oceanology. 2007. Vol. 47. No. 6. P. 769‒787. doi: 10.1134/S0001437007060033.
  9. Bondur V.G., Zhurbas V.M., Grebenyuk Yu.V. Mathematical Modeling of Turbulent Jets of Deep-Water Sewage Discharge into Coastal Basins // Oceanology. 2006 (a). Vol. 46. No. 6. P. 757‒771. doi: 10.1134/S0001437006060014.
  10. Bondur V.G., Keeler R.N., Starchenkov S.A., Rybakova N.I. Monitoring zagryazneniy pribrezhnyh akvatoriy s ispolzovaniem mnogospektralnyh sputnikovyh izobrazheniy vysokogo prostranstvennogo razresheniya (Monitoring of the pollution of the ocean coastal water areas using space multispectral high resolution imagery) // Issledovanie Zemli is Kosmosa. 2006 (b). No. 6. P. 42‒49.
  11. Gidrometeorologiia i gidrohimiia morei` / pod red. F.S. Terziev, A.N. Kosarev, A.A. Kerimov. 1992. Tom 6. Vy`p. 1. SPb: Gidrometeoizdat. 360 p.
  12. Dmitrievskii` A.N. i dr. Mehanizm obrazovaniia zalezhei` uglevodorodov // Gazovaia promy`shlennost`. 1999. № 5. Pp. 74–77.
  13. Erlov N.G. Opticheskaia okeanografiia. M.: Mir, 1970. 224 p.
  14. Ershov V.V. Fliuidodinamicheskie protcessy` v zone central`nosahalinskogo razloma (po rezul`tatam nabliudenii` na Iuzhno-Sahalinskom griazevom vulkane) // Geodinamika i tektonofizika. 2015. T. 3. № 4. Pp. 345–360. doi: 10.5800/GT-2012-3-4-0078.
  15. Ivanov A.Yu. Slicks and Oil Films Signatures on Syntetic Aperture Radar Images. Issledovanie Zemli iz kosmosa. 2007. № 3. Pp. 73‒96.
  16. Lavrova O.Iu., Uvarov I.A., Krasheninnikova Iu.S. Satellite observations of the eruption of a mud volcano on the Dashly Island in the Caspian Sea on July 4, 2021 // Sovremenny`e problemy` distantcionnogo zondirovaniia Zemli iz kosmosa. 2021. T. 18. № 3. Pp. 332–336. doi: 10.21046/2070-7401-2021-18-3-332-336.
  17. Matrosova E.R., Khodaeva V.N., Ivanov A.Yu. Determining the Characteristics of Natural Oil Seeps and Their Underwater Sources Based on Remote Sensing Data // Izv. Atmos. Ocean. Phys. 2022. Т. 58. № 9. Pp. 1008–1027. doi: 10.1134/S0001433822090146.
  18. Methane and climate change: scientific problems and technological aspects. Moscow: Russian Academy of Sciences, 2022 / Ed. by academician of the RAS V.G. Bondur, academician of the RAS I.I. Mokhov, and correspondent member of the RAS A.A. Makosko. 388 p.
  19. Solov`ev V.F. Griazevoi` vulkan “banka Livanova” v Kaspii`skom more. DAN SSSR, ser. geol., № 2, 1952.
  20. Holodov V.N. O proishozhdenii griazevy`kh vulkanov // Geologiia i polezny`e iskopaemy`e mirovogo okeana. 2019. T. 15. № 4 (58). Pp. 57–80. doi: 10.15407/gpimo2019.04.057.
  21. Holodov V.N. Griazevy`e vulkany`: rasprostranenie i genezis // Geologiia i polezny`e iskopaemy`e mirovogo okeana. 2012. № 4. Pp. 5–27.
  22. Cherkashin V.I. i dr. Tektonicheskoe stroenie i perspektivy` neftegazonosnosti osadochnogo pokrova dna Kaspii`skogo moria // Trudy` Instituta Geologii Dagestanskogo Nauchnogo Centra RAN. 2018. № 4 (75). Pp. 24–29.
  23. Shniukov E.F., Aliev Ad.A., Rakhmanov R.R. Griazevoi` vulkanizm Sredizemnogo, Chernogo i Kaspii`skogo Morei`: Spetcifika razvitiia i proiavleniia // Geologiia i polezny`e iskopaemy`e Mirovogo okeana. 2017. № 2 (48). Pp. 5–25.
  24. Iusubov N.P., Guliev I.S. Griazevoi` vulkanizm i uglevodorodny`e sistemy` Iuzhno-Kaspii`skoi` vpadiny` (Po novei`shim danny`m geofizicheskikh i geohimicheskikh issledovanii`). Baku: E`lm, 2022. 168 p.
  25. Iaitckaia N.A. Vosstanovlenie polei` temperatury` i solenosti vod Kaspii`skogo moria s pomoshch`iu gidrodinamicheskogo modelirovaniia // Prirodny`e resursy` Arktiki i Subarktiki. 2017. № 1 (85). Pp. 122–128.
  26. Al-Lashi R.S., Gunn S.R., Czerski H. Automated processing of oceanic bubble images for measuring bubble size distributions underneath breaking waves // Journal of Atmospheric and Oceanic Technology. 2016. V. 33. № 8. P. 1701–1714. doi: 10.1175/JTECH-D-15-0222.
  27. Fallati L., Panieri G., Argentino C., Varzi A.G., Bünz S., and Savini A. Characterizing Håkon Mosby Mud Volcano (Barents Sea) cold seep systems by combining ROV-based acoustic data and underwater photogrammetry. Front. Mar. Sci. 2023. 10:1269197. doi: 10.3389/fmars.2023.1269197.
  28. Kopelevich O.V., Sheberstov S.V., Yunev O., Basturk O., Finenko Z.Z., Nikonov S., Vedernikov V.I. Surface chlorophyll in the Black Sea over 1978–1986 derived from satellite and in situ data, Journal of Marine Systems. V. 36. Iss. 3–4. 2002. P. 145‒160. doi: 10.1016/S0924-7963(02)00184-7.
  29. Landsat 8 (L8) Data Users Handbook. Sioux Falls, SD, USA: USGS, 2019. Ed. 5. 114 p.
  30. Peli E. Contrast in complex images // J. Opt. Soc. Am. A, JOSAA. 1990. V. 7. № 10. P. 2032–2040. doi: 10.1364/JOSAA.7.002032.
  31. Sentinel-2 User Handbook. European Space Agency (ESA) // ESA Standard Document. V.1. 2015. 64 p.
  32. Stramski D. Gas microbubbles: an assessment of their significance to light scattering in quiescent seas// Proc. SPIE 2258, Ocean Optics XII, (26 October 1994). V. 2258. P. 704–710. doi: 10.1117/12.190117.
  33. Zhang X., Lewis M., Johnson B. Influence of bubbles on scattering of light in the ocean // Appl. Opt., AO. 1998. V. 37. № 27. P. 6525–6536. doi: 10.1364/AO.37.006525.
  34. Vincent P. Sentinel-1 Product Specification. MPC-S1: ESA, 2020. 197 p.
  35. Wu T., Deng X., Yao H., Liu B., Ma J., Haider S.W., Yu Z., Wang L., Yu M., Lu J., Sohoo Engr.N., Kalhoro N.A., Kahkashan S., Wei J. Distribution and development of submarine mud volcanoes on the Makran Continental Margin, offshore Pakistan // Journal of Asian Earth Sciences. 2021. Vol. 207. P. 104653. https://doi.org/10.1016/j.jseaes.2020.104653

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. The layout of the studied area of the water area (yellow rectangle), superimposed on the bathymetric map of the Caspian Sea.

Жүктеу (25KB)
3. Fig. 2. Generalized scheme of the research.

Жүктеу (152KB)
4. Fig. 3. The diagram of the correspondence of the wavelengths of the spectral channels of the Landsat-8 (OLI equipment, red rectangles) and Sentinel-2A/B (MSI equipment, green rectangles) satellites. The corresponding channels are marked with thickened contours.

Жүктеу (65KB)
5. Fig. 4. a ‒ examples of satellite multispectral images (synthesis in natural colors - RGB) of sea surface areas with manifestations of GWF; b ‒ spectral reflectivity profiles constructed using data from the “red”, “green”, “blue” channels.

Жүктеу (59KB)
6. Fig. 5. Examples of joint analysis of quasi-synchronous optical (Sentinel-2A/B, color fragments) and radar (Sentinel-1A/B, grayscale fragments) space images of GWFs (a–b) and oil seeps (c–e) identified in the work (Matrosova et al., 2022).

Жүктеу (102KB)
7. Fig. 6. a ‒ Overview map of the southern Caspian Sea with a highlighted study area and detected generalized GWF contours; b, c ‒ maps of the contours of identified GWFs on an enlarged scale and the corresponding color-coded maps of the number of GWF observations (d, e); d ‒ depth map in the study area (isobath depths are marked with numbers from 10 to 60 (m)).

Жүктеу (104KB)
8. Fig. 7. Distribution graphs by months (from 2019 to 2021): a-c – the number of satellite images and cases of GVF registration; d – the number of cases of GVF detection, expressed as a percentage of the number of surveys.

Жүктеу (91KB)
9. Fig. 8. a ‒ Graphs of mathematical expectations of the spectral reflectivity of GVF manifestation zones (red line) and the background sea surface (blue line), obtained from the results of joint processing of data from the Sentinel-2A/B (112 scenes) and Landsat-8 (68 scenes) satellites; b ‒ graph of the change in GVF contrast depending on the spectral channel used.

Жүктеу (48KB)

© Russian academy of sciences, 2025