Comparison of the images of hot spots and mantle plumes of various types in the lithospheric magnetic anomalies field

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The spatial distribution of the lithospheric magnetic anomalies Maps of the spatial distribution of the lithospheric magnetic anomaly field for three hot spot areas: Hawaii, Afar and Iceland were analyzed in order to solve the interdisciplinary problem of the hot spots and mantle plumes impact on the lithosphere. To construct the plume and hot spot magnetic images the experimental data of the CHAMP satellite was used which were obtained in the last year of its operation, 2010, at a minimum level of 280-260 km. The database of the anomalous magnetic field parameters has been supplemented for areas where materials on these hot spots were already available, and new data has been obtained for the part of the Pacific Ocean where the Hawaiian hotspot is located. Maps of lithospheric magnetic anomalies have been constructed for the central Pacific Ocean, the East African rift zone and the North Atlantic. It is shown that magnetic images of the various types of hotspots: oceanic Hawaiian, continental Ethiopian and island Icelandic appear themselves in different ways, which reflect the consequences of tectonic processes that took place earlier and are currently developing in the territories under consideration. It is shown that the use of satellite observations of the lithospheric magnetic field in areas with mantle plume activity when being combined with other geological and geophysical regional data could add considerable information to the overall picture of the tectonic processes study.

全文:

受限制的访问

作者简介

L. Abramova

Geoelectromagnetic Research Centre, Shmidt Institute of Physics of the Earth, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: labramova@igemi.troitsk.ru
俄罗斯联邦, Moscow, Troitsk

D. Abramova

Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences

Email: labramova@igemi.troitsk.ru
俄罗斯联邦, Moscow, Troitsk

参考

  1. Abramova D.Yu., Abramova L.M. Lithospheric magnetic anomalies in the territory of Siberia (from measurements by the CHAMP satellite) // Russian Geology and Geophysics. 2014. V. 55. № 7. P. 854–863. https://doi.org/10.1016/j.rgg.2014.06.005
  2. Abramova D.Yu., Abramova L.M., Filippov S.V. Korreliatsiya litosfernih magnitnih anomaliy i tektonicheskih struktur v norvezhsko-grenlandskoy chasti Arktiki [Correlation of the lithospheric magnetic anomalies and tectonic structures of the Norway-Greenland part of the Arctic] // Geodinamika i tektonofizika. 2018. V. 9. № 4. P. 1163–1172. https://doi.org/10.5800/GT-2018-9-4-0388 (In Russian).
  3. Abramova D.Yu., Filippov S.V, Abramova L.M. Possible Use of Satellite Geomagnetic Observations in Geological and Tectonic Studies of Lithosphere Structure // Izvestiya, Atmospheric and Oceanic Physics. 2020. V. 56. № 12. Р. 1695–1704. https://doi.org/10.1134/S0001433820120324
  4. Abramova L.M., Varentsov I.M., Abramova D.Yu. Image of Mantle Plume Processes in the Satellite Magnetic Field over Africa // Izvestiya, Atmospheric and Oceanic Physics. 2023. V. 59. № 9. Р. 1045–1054. https://doi.org/10.1134/S0001433823090025
  5. Allen R., Nolet G., Morgan W., Vogfjord K., Nettles M., Ekstrom G., Bergsson B., Erlendsson P., Foulger G., Jakobsdóttir S., Julian B., Pritchard M., Ragnarsson S., Stefánsson R. Plume driven plumbing and crustal formation in Iceland // J. Geophys. Res. 2002. V. 107. № B8. P. ESE 4-1-ESE 4-19. https://doi.org/10.1029/2001JB000584
  6. Bastow I., Nyblade A., Stuar G., Rooney T., Benoit M. Upper mantle seismic structure beneath the Ethiopian hot spot: Rifting at the edge of the African low-velocity anomaly // Geochem. Geophys. Geosyst. 2008. V. 9. № 12. 10.1029/2008GC002107' target='_blank'>https://doi: 10.1029/2008GC002107
  7. Benoit M., Nyblade A., VanDecar J. Uppermantle P-wave speed variations beneath Ethiopia and the origin of the Afar hotspot // Geology. 2006. V. 34. P. 329–332. https://doi.org/10.1130/G22281.1
  8. Bijwaard H., Spakman W. Tomographic evidence for a whole-mantle plume below Iceland // Earth Planet. Sci. Lett. 1999. V. 166. P. 121‒126. https://doi.org/10.1016/S0012-821X(99)00004-7
  9. Darbyshire F., White R., Priestley K. Structure of the crust and uppermost mantle of Iceland from a combined seismic and gravity study // Earth Planet. Sci. Lett. 2000. 181. P. 409–428. https://doi.org/10.1016/S0012-821X(00)00206-5
  10. Davies G.F. Ocean bathymetry and mantle convection: 1. Large-scale flow and hotspots // J. Geophys. Res. 1988. V. 93. P. 10467–10480. https://doi.org/10.1029/JB093iB09p10467
  11. Dobretsov N.L. Geologicheskie sledstviya termohimicheskoy modeli plyumov [Geological implications of the thermochemical plume model] // Russian Geology and Geophysics. 2008. V. 49. № 7. P. 587–604. (In Russian).
  12. Forte A., Qu´er´e S., Moucha R., Simmons N., Grand S., Mitrovica J., Rowley D. Joint seismic-geodynamic-mineral physical modeling of African geodynamics: a reconciliation of deep-mantle convection with surface geophysical constraints // Earth Planet. Sci. Lett. 2010. V. 295. P. 329‒341. https://doi.org/10.1016/j.epsl.2010.03.017
  13. Fouch M., James D., Van Decar J., Van der Lee S., and the Kaapvaal Seismic Group. Mantle seismic structure beneath the Kaapvaal and Zimbabwe cratons // South Afr. J. Geol. 2004. V. 107. P. 33‒44. https://doi.org/10.2113/107.1-2.33
  14. Foulger G., Anderson D. A cool model for the Iceland hotspot // Journal of Volcanology and Geothermal Research. 2005. V. 141. P. 1‒22. https://doi.org/10.1016/j.jvolgeores.2004.10.007
  15. Golovkov V.P., Zvereva T.I., Chernova T.A. Metod sozdaniya prostranstvenno-vremennoy modeli glavnogo magnitnogo polya putem sovmestnogo ispol’zovaniya metodov sfericheskogo garmonicheskogo analiza i yestestvennyh ortogonal’nyh komponent [Method of creating a space-time model of the main magnetic field by using the methods of spherical harmonic analysis and natural orthogonal components] // Geomagnetism and Aeronomy. 2007. V. 47. № 2. P. 272‒278. (In Russian).
  16. Hansen S., Nyblade A., Benoit M. Mantle structure beneath Africa and Arabia from adaptively parameterized P-wave tomography: Implications for the origin of Cenozoic Afro-Arabian tectonism // Earth Planet. Sci. Lett. 2012. V. 319–320. P. 23–34. https://doi.org/10.1016/j.epsl.2011.12.023
  17. Hansen S., Nyblade A. The deep seismic structure of the Ethiopia/Afar hotspot and the African superplume // Geophys. J. Int. 2013. V. 194. P. 118–124. https://doi.org/10.1093/gji/ggt116
  18. Hjartarson Á., Erlendsson Ö., Blischke A. The Greenland–Iceland–Faroe Ridge Complex. In: G. Péron-Pinvidic, J.R. Hopper, T. Funck, M.S. Stoker, C. Gaina, J.C. Doornenbal, U.E. Árting (Eds.) The NE Atlantic Region: a reappraisal of crustal structure, tectonostratigraphy and magmatic evolution / Geological Society. London. Special Publications. 2017. V. 447. P. 127–148. https://doi.org/10.1144/SP447.14
  19. Jakovlev A., Bushenkova N., Koulakov I., Dobretsov N. Struktura verhnei mantii Arkticheskogo regiona po dannym regional’noi seismotomografyi [Structure of the upper mantle in the Circum - Arctic region from regional seismic tomography] // Russian Geology and Geophysics. 2012. V. 53. P. 1261‒1272. (In Russian).
  20. Lei J., Zhao D. A new insight into the Hawaiian plume // Earth and Planetary Sci. Lett. 2006. V. 241. P. 438‒453. https://doi.org/10.1016/j.epsl.2005.11.038
  21. Li X., Kind R., Priestley K., Sobolev S., Tilmann F. Mapping the Hawaiian0 plume conduit with converted seismic waves // Nature. 2000. V. 405. P. 938–941. https://doi.org/10.1038/35016054
  22. Loper D.E. Mantle plumes // Tectonophysics. 1991. V. 187. P. 373‒384. https://doi.org/10.1016/0040-1951(91)90476-9
  23. Maruyama Sh. Plume tectonics // Geol. Soc. Japan. 1994. V. 100. (1). P. 24‒34. https://doi.org/10.5575/geosoc.100.24
  24. Montelli R., Nolet G., Dahlen F.A., Masters G. A catalogue of deep mantle plumes: New results from finite-frequency tomography // Geochem. Geophys. Geosyst. 2006. V. 7. Q11007. 10.1029/2006GC001248' target='_blank'>https://doi: 10.1029/2006GC001248
  25. Morgan W. Convection plumes in the lower mantle // Nature. 1971. V. 230. P. 42–43. https://doi.org/10.1038/230042a0
  26. Nataf H. Seismic imaging of mantle plumes // Ann. Rev. Earth Planet. Sci. 2000. V. 28. P. 391–417. https://doi.org/10.1146/annurev.earth.28.1.391
  27. Pirajno F. Ore deposits and mantle plumes. Kluwer Academic Publishers, 2004. 556 p. https://doi.org/10.1007/978-94-017-2502-6
  28. Reigber C., Lühr H., Schwintzer P. CHAMP mission status // Advances in Space Research. 2002. V. 30. № 2. P. 129–134. https://doi.org/10.1016/S0273-1177(02)00276-4
  29. Rickers F., Fichtner A., Trampert J. The Iceland–Jan Mayen plume system and its impaction mantle dynamics in the North Atlantic region: Evidence from full-waveform inversion // Earth and Planet. Sci. Lett. 2013. V. 367. P. 39–51. https://doi.org/10.1016/j.epsl.2013.02.022
  30. Ritsema J., Allen R. The elusive mantle plume // Earth Planet. Sci. Lett. 2003. V. 207. P. 1‒12. https://doi.org/10.1016/S0012-821X(02)01093-2
  31. Ritsema J., van Heijst H., Woodhouse J. Complex shear wave velocity structure beneath Africa and Iceland // Science. 1999. V. 286. P. 1925‒1928. https://doi.org/10.1126/science.286.5446.1925
  32. Simmons N., Forte A., Grand S. Thermochemical structure and dynamics of the African superplume // Geophys. Res. Lett. 2007. V. 34. 10.1029/2006GL028009' target='_blank'>https://doi: 10.1029/2006GL028009
  33. Sleep N.H. Hotspots and mantle plumes: some phenomenology // J. Geophys. Res. 1990. V. 95. P. 6715–6736. https://doi.org/10.1029/JB095iB05p06715
  34. Wessel P., Smit W.H.F. The generic mapping tools /Technical reference and cookbook version 4.2. 2007. https://doi.org/10.1029/98EO00426
  35. Wilson J. A possible origin of the Hawaiian icelands // Canadian Journal of Physics. 1963. V. 41. P. 863–870. https://doi.org/10.1139/p63-094
  36. Wolfe C.J., Bjarnason I.T., Van Decar J.C., Solomon S.C. Seismic structure of the Iceland mantle plume // Nature. 1997. 385. P. 245‒247. https://doi.org/10.1038/385245a0
  37. Wolfe C., Solomon S., Silver P., Van Decar J., Russo R. Inversion of body-wave delay times for mantle structure beneath the Hawaiian islands: results from the PELENET experiment // Earth and Planet. Sci. Lett. 2002. V. 198. P. 129–145. https://doi.org/10.1016/S0012-821X(02)00493-4

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Mantle plume and its hotspot. CMB – core-mantle boundary (Nataf, 2000).

下载 (15KB)
3. Fig. 2. Study area of the Hawaiian hotspot. White dots are seismic stations and earthquakes. The hotspot is marked with a red triangle. The location of the study area is shown in the inset as a rectangular frame in the central Pacific Ocean (Lei, Zhao, 2006).

下载 (25KB)
4. Fig. 3. (a) The result of seismic tomography of p-wave velocities beneath the Hawaiian hotspot at some representative depths, the number on the left is the depth (km) of each layer. The color indicates the percent deviation of velocities to the smaller (red) or larger (blue) side from the average mantle velocity (based on (Lei, Zhao, 2006)). (b) Distribution of the LMA field (Ta) in the study area. The map was constructed using the blockmedian averaging over 40 × 40 km blocks by GMT (Wessel, Smith, 2007). Scale values are in nT.

下载 (47KB)
5. Fig. 4. Distribution of the LMA (Ta) field over part of the Pacific Ocean. The plot was constructed using the blockmedian averaging over 80 × 80 km blocks by GMT (Wessel, Smith, 2007). Scale values are in nT.

下载 (20KB)
6. Fig. 5. Map of the LMA (Ta) over the Ethiopian Plateau / East African Rift Zone area. The letters indicate: ETH – Ethiopian Plateau; AF – Afar Basin; MER – Main Ethiopian Rift. Scale values are in nT.

下载 (36KB)
7. Fig. 6. Map of the LMA (Ta) at an altitude of 280 km over the North Atlantic; AO – Atlantic Ocean; GRN – Greenland; ICL – Iceland; thick solid line – position of the Mid-Atlantic Ridge; dotted line – supposed trajectory of the Icelandic plume; PL – present-day position of the plume and the Icelandic hotspot. Scale values in nT.

下载 (21KB)
8. Fig. 7. (a) Spatial distribution of the LMA (Ta) field at a level of 260 km above the territory of Iceland. The dotted line indicates the trajectory of the Icelandic plume; solid thin line – seismic profile NW – SE; PL – present-day position of the hotspot. Scale values in nT. (b) Vertical section of seismic velocity anomalies for a three-dimensional model along the NW – SE profile in the territory of Iceland (Allen et al., 2002).

下载 (39KB)

版权所有 © Russian academy of sciences, 2025