Abnormally Long Absence of Polar Stratospheric Clouds in the Arctic in Midwinter According to Satellite Observations
- Autores: Zuev V.V.1, Savelieva E.S.1, Sidorovsky E.A.1,2
-
Afiliações:
- Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences
- National Research Tomsk State University
- Edição: Nº 1 (2023)
- Páginas: 79-91
- Seção: МЕТОДЫ И СРЕДСТВА ОБРАБОТКИ И ИНТЕРПРЕТАЦИИ КОСМИЧЕСКОЙ ИНФОРМАЦИИ
- URL: https://journals.eco-vector.com/0205-9614/article/view/659211
- DOI: https://doi.org/10.31857/S0205961423010128
- EDN: https://elibrary.ru/MNNOZF
- ID: 659211
Citar
Texto integral
Resumo
Polar stratospheric clouds (PSCs) play a significant role in ozone depletion in the polar regions, acting as “surfaces” for heterogeneous reactions proceeding with the release of photochemically active molecular chlorine from late winter to early spring. Moreover, during the winter, chlorine “reservoirs”, which are reagents for heterogeneous reactions, accumulate on PSC particles. When PSC particles are destroyed in midwinter, the accumulation of chlorine compounds is interrupted, and from late winter to spring, ozone depletion is not observed even under conditions of the strong polar vortex, in the presence of newly formed PSCs. Using the vortex delineation method, we studied the dynamics of the Arctic polar vortex in the winters of 1984/1985, 1998/1999, 2001/2002, 2012/2013 and 2018/2019, as the reasons for the abnormally long absence of PSCs in the Arctic in midwinter, when they existed in January within no more than 5 days according to satellite observations. The PSC melting in these years was observed when the dynamic barrier of the polar vortex weakened due to a local decrease in wind speed along the vortex edge below 20 m/s in the lower stratosphere, which was recorded throughout almost the entire January. The described cases are the only examples of unusual weakening of the Arctic polar vortex in midwinter for the period from 1979 to 2022.
Sobre autores
V. Zuev
Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences
Email: esav.pv@gmail.com
Russia, Tomsk
E. Savelieva
Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: esav.pv@gmail.com
Russia, Tomsk
E. Sidorovsky
Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences; National Research Tomsk State University
Email: esav.pv@gmail.com
Russia, Tomsk; Russia, Tomsk
Bibliografia
- Агеева В.Ю., Груздев А.Н., Елохов А.С., Мохов И.И., Зуева Н.Е. Внезапные стратосферные потепления: статистические характеристики и влияние на общее содержание NO2 и O3 // Известия РАН. ФАО. 2017. Т. 53. № 5. С. 545–555. https://doi.org/10.7868/S0003351517050014 [Ageyeva V.Y., Gruzdev A.N., Elokhov A.S., Mokhov I.I., Zueva N.E. Sudden stratospheric warmings: statistical characteristics and influence on NO2 and O3 total contents // Izv. Atmos. Ocean. Phys. 2017. V. 53. № 5. P. 477–486. 10.7868/S0003351517050014
- Алоян А.Е., Ермаков А.Н., Арутюнян В.О. Моделирование образования полярных стратосферных облаков с учетом кинетических и гетерогенных процессов // Известия РАН. ФАО. 2015. Т. 51. № 3. С. 276–286. https://doi.org/10.7868/S0002351515030025 [Aloyan A.E., Yermakov A.N., Arutyunyan V.O. Modeling the formation of polar stratospheric clouds with allowance for kinetic and heterogeneous processes // Izv. Atmos. Ocean. Phys. 2015. V. 51. № 3. P. 241–250. 10.7868/S0002351515030025
- Зуев В.В., Савельева Е.С., Павлинский А.В. Анализ динамики арктического полярного вихря во время внезапного стратосферного потепления в январе 2009 г. // Проблемы Арктики и Антарктики. 2021. Т. 67. № 2. С. 134–146. [Zuev V.V., Savelieva E.S., Pavlinsky A.V. Analysis of the Arctic polar vortex dynamics during the sudden stratospheric warming in January 2009 // Arctic and Antarctic Research. 2021. V. 67. № 2. P. 134–146. https://doi.org/10.30758/0555-2648-2021-67-2-134-146]
- Зуев В.В., Савельева Е.С., Павлинский А.В. Особенности ослабления стратосферного полярного вихря, предшествующие его разрушению // Оптика атмосф. и океана. 2022. Т. 35. № 1. С. 81–83. [Zuev V.V., Savelieva E.S., Pavlinsky A.V. Features of stratospheric polar vortex weakening prior to breakdown // Atmos. Ocean. Opt. 2022. V. 35. № 2. P. 183–186. https://doi.org/10.1134/S1024856022020142]https://doi.org/10.15372/AOO20220112
- Ayarzagüena B., Polvani L.M., Langematz U., Akiyoshi H., Bekki S., Butchart N., Dameris M., Deushi M., Hardiman S.C., Jöckel P., Klekociuk A., Marchand M., Michou M., Morgenstern O., O’Connor F.M., Oman L.D., Plummer D.A., Revell L., Rozanov E., Saint-Martin D., Scinocca J., Stenke A., Stone K., Yamashita Y., Yoshida K., Zeng G. No robust evidence of future changes in major stratospheric sudden warmings: a multi-model assessment from CCMI // Atmos. Chem. Phys. 2018. V. 18. № 15. P. 11277‒11287. https://doi.org/10.5194/acp-18-11277-2018
- Brunet G., Montgomery M.T. Vortex Rossby waves on smooth circular vortices: Part I. Theory // Dynam. Atmos. Oceans. 2002. V. 35. № 2. P. 153–177. https://doi.org/10.1016/S0377-0265(01)00087-2
- Ebert M., Weigel R., Kandler K., Günther G., Molleker S., Grooß J.-U., Vogel B., Weinbruch S., Borrmann S. Chemical analysis of refractory stratospheric aerosol particles collected within the arctic vortex and inside polar stratospheric clouds // Atmos. Chem. Phys. 2016. V. 16. № 13. P. 8405–8421. https://doi.org/10.5194/acp-16-8405-2016
- Engel I., Luo B.P., Pitts M.C., Poole L.R., Hoyle C.R., Grooß J.-U., Dörnbrack A., Peter T. Heterogeneous formation of polar stratospheric clouds – Part 2: Nucleation of ice on synoptic scales // Atmos. Chem. Phys. 2013. V. 13. № 21. P. 10769–10785. https://doi.org/10.5194/acp-13-10769-2013
- Gelaro R., McCarty W., Suárez M.J., Todling R., Molod A., Takacs L., Randles C.A., Darmenov A., Bosilovich M.G., Reichle R., Wargan K., Coy L., Cullather R., Draper C., Akella S., Buchard V., Conaty A., da Silva A.M., Gu W., Kim G.-K., Koster R., Lucchesi R., Merkova D., Nielsen J.E., Partyka G., Pawson S., Putman W., Rienecker M., Schubert S.D., Sienkiewicz M., Zhao B. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) // J. Climate. 2017. V. 30. № 14. P. 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1
- Gomez-Martin L., Toledo D., Prados-Roman C., Adame J.A., Ochoa H., Yela M. Polar stratospheric clouds detection at Belgrano II Antarctic station with Visible ground-based spectroscopic measurements // Remote Sens. 2021. V. 13. № 8. P. 1412. https://doi.org/10.3390/rs13081412
- Grooß J.-U., Müller R. Simulation of record Arctic stratospheric ozone depletion in 2020 // J. Geophys. Res. Atmos. 2021. V. 126. № 12. P. e2020JD033339. https://doi.org/10.1029/2020JD033339
- Harris N.R.P., Lehmann R., Rex M., von der Gathen P. A closer look at Arctic ozone loss and polar stratospheric clouds // Atmos. Chem. Phys. 2010. V. 10. № 17. P. 8499–8510. https://doi.org/10.5194/acp-10-8499-2010
- Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.-N. The ERA5 global reanalysis // Q. J. Roy. Meteor. Soc. 2020. V. 146. № 729. P. 1–51. https://doi.org/10.1002/qj.3803
- Hoyle C.R., Engel I., Luo B.P., Pitts M.C., Poole L.R., Grooß J.-U., Peter T. Heterogeneous formation of polar stratospheric clouds – Part 1: Nucleation of nitric acid trihydrate (NAT) // Atmos. Chem. Phys. 2013. V. 13. № 18. P. 9577–9595. https://doi.org/10.5194/acp-13-9577-2013
- Jaiser R., Dethloff K., Handorf D. Stratospheric response to Arctic sea ice retreat and associated planetary wave propagation changes // Tellus A. 2013. V. 65. № 1. P. 19375. https://doi.org/10.3402/tellusa.v65i0.19375
- Kim B.-M., Son S.-W., Min S.-K., Jeong J.-H., Kim S.-J., Zhang X., Shim T., Yoon J.H. Weakening of the stratospheric polar vortex by Arctic sea-ice loss // Nat. Commun. 2014. V. 5. P. 4646. https://doi.org/10.1038/ncomms5646
- Kirner O., Ruhnke R., Buchholz‑Dietsch J., Jöckel P., Brühl C., Steil B. Simulation of polar stratospheric clouds in the chemistry‑climate-model EMAC via the submodel PSC // Geosci. Model Dev. 2011. V. 4. № 1. P. 169–182. https://doi.org/10.5194/gmd-4-169-2011
- Lawrence Z.D., Perlwitz J., Butler A.H., Manney G.L., Newman P.A., Lee S.H., Nash E.R. The remarkably strong Arctic stratospheric polar vortex of winter 2020: Links to record-breaking Arctic Oscillation and ozone loss // Geophys. Res. Lett. 2020. V. 125. № 22. P. e2020JD033271. https://doi.org/10.1029/2020JD033271.
- Manney G.L., Zurek R.W. On the motion of air through the stratospheric polar vortex // J. Atmos. Sci. 1994. V. 51. № 20. P. 2973‒2994. https://doi.org/10.1175/1520-0469(1994)051<2973:OTMOAT>2.0.CO;2
- Massoli P., Maturilli M., Neuber R. Climatology of Arctic polar stratospheric clouds as measured by lidar in Ny-Ålesund, Spitsbergen (79° N, 12° E) // J. Geophys. Res. Atmos. 2006. V. 111. № 9. P. D09206. https://doi.org/10.1029/2005JD005840
- Mitchell D.M., Osprey S.M., Gray L.J., Butchart N., Hardiman S.C., Charlton-Perez A.J., Watson P. The effect of climate change on the variability of the Northern Hemisphere stratospheric polar vortex // J. Atmos. Sci. 2012. V. 69. № 8. P. 2608–3812. https://doi.org/10.1175/JAS-D-12-021.1
- Molleker S., Borrmann S., Schlager H., Luo B., Frey W., Klingebiel M., Weigel R., Ebert M., Mitev V., Matthey R., Woiwode W., Oelhaf H., Dörnbrack A., Stratmann G., Grooß J.-U., Günther G., Vogel B., Müller R., Krämer M., Meyer J., Cairo F. Microphysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO3-containing particles in the Arctic vortex // Aтыtmos. Chem. Phys. 2014. V. 14. № 19. P. 10785–10801. https://doi.org/10.5194/acp-14-10785-2014
- Montgomery M.T., Brunet G. Vortex Rossby waves on smooth circular vortices: Part II. Idealized numerical experiments for tropical cyclone and polar vortex interiors // Dynam. Atmos. Oceans. 2002. V. 35. № 2. P. 179–204. https://doi.org/10.1016/S0377-0265(01)00088-4
- Newman P., Lait L.R., Schoeberl M., Nash E.R., Kelly K., Fahey D.W., Nagatani R., Toohey D., Avallone L., Anderson J. Stratospheric meteorological conditions in the Arctic polar vortex, 1991 to 1992 // Science. 1993. V. 261. № 5125. P. 1143–1146. https://doi.org/10.1126/science.261.5125.1143
- Newman P.A., Kawa S.R., Nash E.R. On the size of the Antarctic ozone hole // Geophys. Res. Lett. 2004. V. 31. № 21. P. L21104. https://doi.org/10.1029/2004GL020596
- Pitts M.C., Poole L.R., Gonzalez R. Polar stratospheric cloud climatology based on CALIPSO spaceborne lidar measurements from 2006 to 2017 // Atmos. Chem. Phys. 2018. V. 18. № 15. P. 10881–10913. https://doi.org/10.5194/acp-18-10881-2018
- Polvani L.M., Saravanan R. The three-dimensional structure of breaking Rossby waves in the polar wintertime stratosphere // J. Atmos. Sci. 2000. V. 57. № 21. P. 3663–3685. https://doi.org/10.1175/1520-0469(2000)057<3663:TTDSOB>2.0.CO;2
- Rodriguez J.M., Ko M.K.W., Sze N.D., Heisey C.W., Yue G.K., McCormick M.P. Ozone response to enhanced heterogeneous processing after the eruption of Mt. Pinatubo // Geophys. Res. Lett. 1994. V. 21. № 3. P. 209–212. https://doi.org/10.1029/93GL03537
- Screen J.A. Simulated atmospheric response to regional and pan-Arctic sea ice loss // J. Climate. 2017. V. 30. № 11. P. 3945–3962. https://doi.org/10.1175/JCLI-D-16-0197.1
- Screen J.A. Arctic sea ice at 1.5 and 2°C // Nat. Clim. Change. 2018. V. 8. P. 362–363. https://doi.org/10.1038/s41558-018-0137-6
- Sigmond M., Fyfe J.C., Swart N.C. Ice-free Arctic projections under the Paris Agreement // Nat. Clim. Change. 2018. V. 8. P. 404‒408. https://doi.org/10.1038/s41558-018-0124-y
- Sobel A.H., Plumb R.A., Waugh D.W. Methods of calculating transport across the polar vortex edge // J. Atmos. Sci. 1997. V. 54. № 18. P. 2241–2260. https://doi.org/10.1175/1520-0469(1997)054<2241:MOCTAT>2.0.CO;2
- Solomon S., Garcia R.R., Rowland F.S., Wuebbles D.J. On the depletion of Antarctic ozone // Nature. 1986. V. 321. P. 755–758. https://doi.org/10.1038/321755a0
- Solomon S. Stratospheric ozone depletion: a review of concepts and history // Rev. Geophys. 1999. V. 37. № 3. P. 275–316. https://doi.org/10.1029/1999RG900008
- Solomon S., Kinnison D., Bandoro J., Garcia R. Simulation of polar ozone depletion: An update // J. Geophys. Res. 2015. V. 120. № 15. P. 7958–7974. https://doi.org/10.1002/2015JD023365
- Steiner M., Luo B., Peter T., Pitts M.C., Stenke A. Evaluation of polar stratospheric clouds in the global chemistry–climate model SOCOLv3.1 by comparison with CALIPSO spaceborne lidar measurements // Geosci. Model Dev. 2021. V. 14. № 2. P. 935–959. https://doi.org/10.5194/gmd-14-935-2021.
- Stenchikov G., Robock A., Ramaswamy V., Schwarzkopf M.D., Hamilton K., Ramachandran S. Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion // J. Geophys. Res. 2002. V. 107. № 24. P. ACL28. https://doi.org/10.1029/2002JD002090
- Stroeve J., Notz D. Changing state of Arctic sea ice across all seasons // Environ. Res. Lett. 2018. V. 13. № 10. P. 103001. https://doi.org/10.1088/1748-9326/aade56
- Tritscher I., Pitts M.C., Poole L.R., Alexander S.P., Cairo F., Chipperfield M.P., Grooß J.-U., Höpfner M., Lambert A., Luo B., Molleker S., Orr A., Salawitch R., Snels M., Spang R., Woiwode W., Peter T. Polar stratospheric clouds: Satellite observations, processes, and role in ozone depletion // Rev. Geophys. 2021. V. 59. № 2. P. e2020RG000702. https://doi.org/10.1029/2020RG000702.
- Waugh D.W., Randel W.J. Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics // J. Atmos. Sci. 1999. V. 56. № 11. P. 1594–1613. https://doi.org/10.1175/1520-0469(1999)056<1594:COAAAP>2.0.CO;2
- Waugh D.W., Sobel A.H., Polvani L.M. What is the polar vortex and how does it influence weather? // Bull. Amer. Meteor. Soc. 2017. V. 98. № 1. P. 37–44. https://doi.org/10.1175/BAMS-D-15-00212.1
- Zuev V.V., Savelieva E. The role of the polar vortex strength during winter in Arctic ozone depletion from late winter to spring // Polar Sci. 2019. V. 22. P. 100469. https://doi.org/10.1016/j.polar.2019.06.001
- Zuev V.V., Savelieva E. Arctic polar vortex dynamics during winter 2006/2007 // Polar Sci. 2020. V. 25. P. 100532. https://doi.org/10.1016/j.polar.2020.100532
- Zuev V.V., Savelieva E. Sensitivity of polar stratospheric clouds to the Arctic polar vortex weakening in the lower stratosphere in midwinter // Proc. SPIE. 2021. V. 11916. P. 1191674. https://doi.org/10.1117/12.2599025
Arquivos suplementares
