Structural position of the magellan mountains (Pacific Ocean) ironmanganese mineralization according to morphotectonic and cosmogeological data

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The use of morphostructural analysis and cosmogeological decoding methods by the working with the underwater Magellan Mountains relief visualized digital models made it possible to identify the spatial and hierarchical organization of ring anomalies and lineaments, correlated, respectively, with focal structures and fault zones of different ranks. According to complex investigations results and available regional geological materials, the decisive importance in the formation and development of the concerned mountain system attaches to the phenomena of mantle diapirism and basaltoid volcanism, which were realized discretely in time during the Cretaceous – Middle Miocene chronological period. The large (radius about 270 km) focal system which are correlated with the underlitospheric mantle diapir projection and expressed in the relief as relict magmatic swell had played the main role in Fe, Mn, Co mineralization distribution within the Magellan Mountains investigated district. The ore mineralization formation was going on differentially in time and space over a time long period starting from the Late Cretaceous (Campanian-Maasticht), against the background of a constantly renewed concentration of Fe, Mn, Co metals in the bottom layers of the water column due to hydrotherms and galmyrolysis phenomena. The radial-concentric distribution of ore mineralization is typical for the relict swell uplift, for individual paleovolcanic structures and their groupings correlated with large guyots. The obtained data served as the basis of forecast criterions for this mineralization type.

全文:

受限制的访问

作者简介

A. Gavrilov

V.I. Il’ichev Pacific Oceanological Institute FEB RAS

编辑信件的主要联系方式.
Email: gavrilov@poi.dvo.ru
俄罗斯联邦, Vladivostok

参考

  1. Andreev S.I. Metallogeniya zhelezomargancevykh obrazovanij Tikhogo okeana [Metallogeny of iron-manganese formations of the Pacific Ocean]. SPb: Nedra, 1994. 191 p. (In Russian).
  2. Bogdanov Yu.A., Soroxtin O.G., Zonenshajn L.B. i dr. Zhelezomargancevye korki i konkrecii podvodnykh gor Tikhogo okeana [Iron-manganese crusts and concretions of Pacific Ocean seamounts]. M.: Nauka, 1990. 229 p. (In Russian).
  3. Vasil`ev B.I. Geologicheskoe stroenie i proiskhozhdenie Tikhogo okeana [Geology and origin of the Pacific Ocean]. Vladivostok: Dal`nauka, 2009. 559 p. (In Russian).
  4. Velinsky V.V., Kovyazin S.V., Bannikov O.L. Dehydrataziya serpentina I rol’vtorichnogo mineraloobrazovaniya v giperbasitakh [Serpentine dehydration and the secondary mineral formation role in hyperbasites] //Geologiay and Geophysika. 1983. Vol. 24. № 6. P. 78–85.
  5. Gavrilov A.A. Problemy morfostrukturno-metallogenicheskogo analiza [Problems of morphostructural-metallogenic analysis]. Vladivostok: Dal`nauka, 1993. Ch. II. P. 141–326. (In Russian).
  6. Gavrilov A.A. Kosmogeologicheskaya indikaciya morfostrukturnykh elementov poberezhij i dna prilegayushchikh akvatorij (zal. Petra Velikogo, Yaponskoe more) [Cosmogeological indication of coasts morphostructural elements and adjacent water areas bottom (the Peter the Great bay, Sea of Japan)] // Okeanologiya. 2021. V. 61. № 4. P. 633–648. doi: 10.31857/S0030157421040043. (In Russian).
  7. Gavrilov A.A. Aktual`nye teoreticheskie voprosy geomorfologicheskikh i morfotektonicheskikh issledovanij [Topical theoretical questions of geomorphological and morphotectonic researches]. Vladivostok: Dal`nauka, 2022. 324 p. (In Russian).
  8. Gavrilov V.P. Geologiya i mineral`nye resursy Mirovogo okeana [World Ocean Geology and Mineral Resources]:Ucheb. dlya vuzov. M.: Nedra, 1990. 323 p. (In Russian).
  9. Geologicheskaya karta Mira [Geological map of the World. M 1: 15,000,000] / Ed. B.A. Yatskevich. VSEGEI, 2000.
  10. Ezhov B.V. Morfostruktury` central`nogo tipa Azii [Central type morphostructures of Asia]. M.: Nauka, 1986. 133 p. (In Russian).
  11. Mezhdunarodnyj geologo-geofizicheskij atlas Tikhogo okeana [International Geological and Geophysical Atlas of the Pacific Ocean]. Moskva – Sankt-Peterburg: CKF VMF, 2003. 192 p.
  12. Kulakov A.P., Ermoshin V.V., Ishchenko A.A. i dr. Megamorphostructura v regione Magellanovykh gor (Zapad Tikhogo okeana ) / [Megamorphostructure in the Magellan Mountains region (the West Pacific)] // Vestnik Dalnevostochnogo otdeleniya Akademii Nauk SSSR. 1990. № 4. S. 68–75. (In Russian).
  13. Mel`nikov M.E. Mestorozhdeniya kobal`tonosnykh margancevykh korok [Deposits of cobalt-rich manganese crusts]. Gelenzhik: FGUGP “Yuzhmorgeologiya”, 2005. 230 p. (In Russian).
  14. Мelnikov M.Е., Sedysheva T.E., Anoxin V.M. Rel`ef Magellanovykh gor po rezul`tatam batimetricheskoj s`emki mnogoluchevym ekholotom. V kn. Geologiya gajotov Magellanovykh gor (Tikhij okean) [Relief of the Magellan Mountains according to the results of bathymetric survey with a multibeam echosounder]. Vladivostok: Dal`nauka, 2020. P. 9–41. (In Russian).
  15. Pletnev S.P., Mel`nikov M.E., S`edin V.T. i dr. Geologiya gajotov Magellanovykh gor (Tikhij okean) [Geology of the Magellan Mountains Guyotes (Pacific Ocean)] Vladivostok: Dal`nauka, 2020. 200 p. (In Russian).
  16. Pushharovskij Yu.M., Melanxolina E.N. Tektonicheskoe razvitie Zemli. Tikhij okean i ego obramlenie [Tectonic development of the Earth. Pacific Ocean and its framing]. M.: Nauka, 1992. 263 p. (In Russian).
  17. Sedov A.P., Matveenkov V.V., Volokitina L.P. i dr. Kolichestvennaya model formorovaniya zepey podvodnykh gor [Qualitative model of the seamounts chains formation] // Vestnik KRAUNZ. Nauki o Zemle. 2005.№ 5. P. 24–44. (In Russian).
  18. Smirnov V.I. Metallogeniya [Metallogeny]. M.: Nauka, 1993. 176 p. (In Russian).
  19. Solov`ev V.V., Ryzhkova V.M. Morfostrukturnyj metod izucheniya glubinnogo stroeniya litosfery [Morphostructural method of the lithosphere deep structure research]. Trudy` LOE. L.: LGU, 1983. T. 77. Vyp. 2. P. 57–62. (In Russian).
  20. Sychev P.M., Soinov V.V., Veselov O.V. i dr. Izostaziya svodovykh podnyatij, khrebtov i podvodnykh gor: termal`nye modeli [Isostasy of swell uplifts, ridges and seamounts: thermal models] // Tixookeanskaya geologiya. 1993. № 1. P. 3–15. (In Russian).
  21. S’edin V.T., Pletnev S.P. O vulkanizme i tektonike v evolyucii gajotov Magellanovykh gor (Tikhij okean) [On volcanism and tectonics in the evolution of the Magellan Mountains guyotes (Pacific Ocean)] // Okeanologiya. 2024. T. 64. № 1. P. 66–77. doi: 10.31857/SOO30157424010058. (In Russian).
  22. Utkin V.P., Khanchuk A.I., Mixajlik E.V. i dr. Rol` sdvigovykh dislokacij okeanicheskoj kory` v formirovanii gajotov Magellanovykh gor (Tikhij okean) [Role of shear dislocations of the oceanic crust in the Magellan Mountains guyotes (Pacific) formation // DAN. 2004. T. 395. № 5. P. 646–550. (In Russian).
  23. Chudaev O.V. Istochniki rudnogo veshchestva / Gajoty` Zapadnoj Pacifiki i ikh rudonosnost’ [Sources of ore matter / Guyotes of the Western Pacific and their ore content]. M.: Nauka, 1995. P. 326–336. (In Russian).
  24. Batiza R., Shcheka S., Tokuyama H., et al. Summary and index to petrologic and geochemical studies of LEG 61 basalt // Init. Reps. DSDP. 1982. Vol. 61. P. 829–839.
  25. Hein J.R. Cobalt-rich ferromanganese crust: global distribution, composition, origin and research activities // Workshop on mineral resources of the international seabed area / Kingston, 2000.
  26. Gavrilov A.A. The Darvin Rise and geomorphologic-geological indication of focal systems on the Pacific Ocean floor // New Concepts in Global Tectonics. Newsletter, 2015. Vol. 3. № 2. P. 196–207.
  27. Gavrilov A.A. Ring structures of the Pacific Ocean bottom and some problems with their investigations // NCGT Journal. 2018. Vol. 6. № 2. P. 172–202.
  28. Lancelot Y., Larson R.L. et al. Proceeding of the Ocean Drilling program // Initial Reports, 1990. Vol. 129. 488 p.
  29. Larsen R.L. Latest pulse of Earth: evidence for a mid-Cretaceous superplume // Geology. 1991. Vol. 19. № 6. P. 547–550.
  30. Liu M., Chase S.G. Evolution of midplate swells: numerical solution // J. Geophys. Res. 1989. V. 94. № B 5. Р. 5571–5584.
  31. Norton I.O. Global hotspot reference frames and Plate motion // The history and dynamics of global motions. AGU Geophys. Monograph. 2000. № 121. P. 339–35.
  32. Premoli S.I., Haggerty J., Rack F. et al. Proceeding of the Ocean Drilling program // Initial Reports TX – 1993. Vol. 144.
  33. Pringle M.S. Radiometric ages of basalts basement recovered at Sites 800, 801 and 802, Leg 129 Western Pacific Ocean // Proc. ODP, Sci. Results. 1992. Vol. 129. P. 389–404.
  34. Sleep N.H. Hotspots and mantle plumes: some phenomenology // Ibid. 1990. V. 95. № B5. P. 6736.
  35. Smoot N.C. Orthogonal intersections of megatrends in the Western Pacific Ocean basin: a case study of the Mid-Pacific mountains // Geomorphology. 1999. Vol. 30. P. 323–356.
  36. Wilson J.T. Mantle plumes and Plate Motions. Tectonophysics. 1973 19. P. 149–64.
  37. Yano T. Late Mesozoic tectono-magmatism in the West Pacific Ocean – in a linear depression or on a domal uplift? NCGT Journal. 2014. V. 2. № 4. P. 98–105.
  38. http://ocean3dprojects.org.cutestat.com

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Bathymetric map (scale 1:5000 000) of the guyot chain and other paleovolcanic submarine rises of the Magellan Seamounts. Isobats are drawn every 1000 m (Melnikov, 2005). Author's interpretation. 1 - the black line marks the contours of the Magellanic ring morphostructure (M).

下载 (80KB)
3. Fig. 2. The ring arrangement of large submarine rises (light colors), associated with guyots and other paleovolcanic structures, on the scheme of the visualized DEM of the northwestern segment of the Magellan Seamounts and the adjacent Marcus Wake mountain region from the northeast. 1 - ring contours of clusters of submarine rises and elevations; 2 - Letter designations - names of the largest MCTs of the studied region: M - Magellanic; D - Dutton, M-Wake - Marcus Wake. Arabic numerals are the names of individual guyots, information about which is given in the article: 1 - Himu, 2 - Golden Dragon, 3 - Hemler.

下载 (68KB)
4. Fig. 3. Paleovolcanic structures on the summits of the guyots of the Magellan Seamounts. According to (Melnikov M.E. et al., 2020), with additions and in the author's interpretation. a - northeastern part of the summit of the Dalmorgeologiya guyot (Alba), b - central part of the summit of the Butakova guyot (see Fig. 1). 1 - isobaths; 2 - zones of high gradients, thickening of isobaths; 3 - contours of the central parts of relatively young paleovolcanic structures; 4-5 - supposed magma-controlling: faults: 4 - rectilinear, 5 - arc and ring.

下载 (120KB)
5. Fig. 4. Scheme of focal structures M 1:7 000 000 of the NW segment of MG and the adjacent NE Marcus Wake Mountain region. Compiled on the basis of geological interpretation of the deciphering data of the visualized DEM (within the framework of the Google Pro program). 1 - focal structures of different sizes, types and ranks: a - large, b - small; 2 - external concentrations of magmatic paleodomes of Datton and Magellan; 3 - single lineaments correlated with faults; 4 - chains or rows of focal structures in zones of magma-controlling faults; 5 - systems of subparallel lineaments characteristic of regional faults. Relict domed uplifts are marked in large letters: D - Dutton, M - Magellan.

下载 (92KB)
6. Fig. 5. The northwestern section of the Pacific Ocean floor on the geological map of the World (Geological Map, 2000) with the contour of the Northwestern supraplume mega-arch (Gavrilov, 2022). The age of geological formations is shown in color: Late Jurassic - blue, Cretaceous - green, Cenozoic - yellow.

下载 (39KB)
7. Fig. 6. Scheme of radial-concentric distribution of Fe, Mn, Co mineralization within the Magellanic relict igneous arch and guyots. Compiled on the basis of materials (Melnikov, 2005), with simplifications, additions and in the author's interpretation. 1-4 - areas of distribution of concretions and crusts with different values of the gravimetric density of occurrence (kg/m2): 1 - less than 10; 2 - from 10 to 20; 3 ‒ from 20 to 30; 4 - more than 30; 5 – unproductive areas; 6 – ring faults of large ore-controlling focal structures.

下载 (117KB)

版权所有 © Russian academy of sciences, 2025