Modeling the Time-Dependent O3 Uptake on a Methane Flame Soot Coating Under Conditions of Competitive O3/NO2 and O3/N2O5 Adsorption

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The uptake of O3 (1 × 1012–5× 1013 cm−3) on a methane soot coating preliminarily exposed to N2O5, is studied using a flow reactor with a movable insert. Based on the dependence of the ozone uptake coefficient on the exposure time and O3 concentration, the uptake mechanism is established and a number of elementary parameters are obtained that describe the uptake process at arbitrary O3 concentrations. Based on the Langmuir representation of adsorption, a model description of the uptake on soot under conditions of the competitive adsorption of O3/NOx, where NOx = NO2 and N2O5, taking into account the multistage uptake process, is proposed. Based on the developed model and elementary parameters describing the uptake of O3, NO2, and N2O5 on a fresh soot surface, as well as the uptake of ozone on a surface pretreated with NO2 and N2O5, numerical estimates were made of the additional contributions to the ozone uptake for two real scenarios of the O3/NOx ratio. For an industrial region in winter, when the ozone concentration is minimal (10 ppb O3, 17 ppb NO2, and 4 ppb N2O5), the additional integral contribution to the uptake of O3 on the reaction products of NO2 with soot is 68%, and in the case of N2O5, it is 3.6%. For the same region in summer, at the maximum ozone concentration (36 ppb O3, 17 ppb NO2, and 4 ppb N2O5), the analogous contributions will be 20 and 1%, respectively. The reasons for this difference are discussed.

About the authors

V. V. Zelenov

Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Email: v.zelenov48@gmail.com
Россия, Москва

E. V. Aparina

Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: v.zelenov48@gmail.com
Россия, Москва

References

  1. McDuffie E.E., Fibiger D.L., Dubé W.P. et al. // J. Geophys. Res. Atmos. 2018. V. 123. P. 4345; https://doi.org/10.1002/2018JD028336
  2. Ларин И.К. // Хим. физика. 2019. Т. 38. № 5. С. 81; https://doi.org/10.1134/S0207401X1905008X
  3. Ларин И.К., Алоян А.Е., Ермаков А.Н. // Хим. физика. 2021. Т. 40. № 5. С. 86; https://doi.org/10.31857/S0207401X21050095
  4. Chang W.L., Bhave P.V., Brown S.S. et al. // Aerosol Sci. Technol. 2011. V. 45. P. 665; https://doi.org/10.1080/02786826.2010.551672
  5. Jaeglé L., Shah V., Thornton J.A. et al. // J. Geophys. Res. Atmos. 2018. V. 123. P. 12368; https://doi.org/10.1029/2018JD029133
  6. Washenfelder R.A., Wagner N.L., Dubé W.P, Brown S.S. // Environ. Sci. Technol. 2011. V. 45. P. 2938; https://doi.org/10.1021/es10334u
  7. Liu Z., Doherty R.M., Wild O. et al. // Atmos. Chem. Phys. 2022. V. 22. P. 1209; https://doi.org/10.5194/acp-22-1209-2022
  8. Roberts-Semple D., Song F., Gao Yu. // Atmos. Pollut. Res. 2012. V. 3. P. 247; www.atmospolres.com
  9. Wagner N.L., Riedel T.P., Young C.J. et al. // J. Geophys. Res. 2013. V. 118D. P. 9331; https://doi.org/10.1002/jgrd.50653
  10. Berner A., Sidla S., Galambos Z. et al. // J. Geophys. Res. Atmosph. 1996. V. 101. P. 19559; https://doi.org/10.1029/95JD03425
  11. Pohl K., Cantwell M., Herckes P., Lohmann R. // Atmos. Chem. Phys. 2014. V. 14. P. 7431; https://doi.org/10.5194/acp-14-7431-2014,2014
  12. Bond T.C., Streets D.G., Yarber K.F. et al. // J. Geophys. Res. 2004. V. 109. D14203; https://doi.org/10.1029/2003JD003697
  13. Wang R., Tao S., Shen H. et al. // Environ. Sci. Technol. 2014. V. 48. P. 6780; https://doi.org/10.1021/es5021422
  14. Klimont Z., Kupiainen K., Heyes C. et al. // Atmos. Chem. Phys. 2017. V. 17. P. 8681; https://doi.org/10.5194/acp-8681-2017
  15. Burkholder J.B., Sander S.P., Abbatt J.P.D. et al. “Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No 19”. NASA JPL Publication 19-5. Pasadena, 2019; http://jpldataeval.jpl.nasa.gov
  16. Kamm S., Möhler O., Naumann K-H. et al. // Atmos. Environ. 1999. V. 33 P. 4651.
  17. Chughtai A.R., Kim J.M., Smith D.M. // J. Atmos. Chem. 2003. V. 45. P. 231; https://doi.org/10.1023/A:1024250505886
  18. Зеленов В.В., Апарина Е.В. // Хим. физика 2021. Т. 40. № 5. С. 55; https://doi.org/10.31857/S0207401X21050149
  19. Зеленов В.В., Апарина Е.В. // Хим. физика 2021. Т. 40. № 10. С. 76; https://doi.org/10.31857/S0207401X21100137
  20. Зеленов В.В., Апарина Е.В. // Хим. физика 2022. Т. 41. № 12. С. 81; https://doi.org/10.31857/S0207401X22120111
  21. Karagulian F., Rossi M.J. // J. Phys. Chem. A. 2007. V. 111. P. 1914; https://doi.org/10.1021/jp0670891
  22. Moise T., Rudich Y. // J. Geophys. Res. 2000. V. 105D. P. 14667; doi: 0148-0227/00/2000JD900071
  23. Ammann M., Pöschl U., Rudich Y. // Phys. Chem. Chem. Phys. 2003. V. 5. P. 351; https://doi.org/10.1039/b208708a
  24. Pöschl U., Rudich Y., Ammann M. // Atmos. Chem. Phys. 2007. V. 7. P. 5989; www.atmos-chem-phys.net/7/5989/2007/

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (86KB)
3.

Download (63KB)
4.

Download (99KB)
5.

Download (79KB)
6.

Download (71KB)
7.

Download (85KB)

Copyright (c) 2023 В.В. Зеленов, Е.В. Апарина