Frequency dependencies of electrical characteristics of composite materials based on organosiloxanes and highly dispersed carbon fillers of various shapes

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Composites based on siloxane with additives of hybrid filler in the form of a mixture of spherical and extended carbon structures frequency characteristics are studied by electrometrical method. The effect of the filler type and concentration on the conductive properties of the composites, as well as the behavior of electrical resistance during mechanical stretching, was determined. The introduction of a hybrid filler into the composite significantly changes the value and depending type of electrical conductivity.

Sobre autores

E. Klimova

Immanuel Kant Baltic Federal University

Email: EIKlimova@kantiana.ru
Kaliningrad, Russia

V. Zhukov

Immanuel Kant Baltic Federal University

Email: EIKlimova@kantiana.ru
Kaliningrad, Russia

G. Molokanov

Immanuel Kant Baltic Federal University

Email: EIKlimova@kantiana.ru
Kaliningrad, Russia

O. Molokanova

Immanuel Kant Baltic Federal University

Email: EIKlimova@kantiana.ru
Kaliningrad, Russia

D. Selyakova

Immanuel Kant Baltic Federal University

Email: EIKlimova@kantiana.ru
Kaliningrad, Russia

O. Molokanova

Immanuel Kant Baltic Federal University

Autor responsável pela correspondência
Email: EIKlimova@kantiana.ru
Kaliningrad, Russia

Bibliografia

  1. Ameri S.K., Kim M., Kuang I. et al. // Imperceptible electrooculography graphene sensor system for human–robot interface, npj 2D Materials and Applications. 2018. № 2. P. 1. https://doi.org/10.1002/adma.201505124
  2. Takeshita T., Yoshida M., Takei Y. et al. // Sci Rep. 2019. V. 9. P. 5897. https://doi.org/10.1038/s41598-019-42027-x
  3. Семенуха О.В., Воронина С.Ю. // Изв. вузов. Технология текстильной пром-ти. 2023. № 6 (408). С. 241.
  4. Folorunso O., Hamam Y., Sadiku R. et al. // Polymers. 2019. V. 8. № 11. P. 1250. https://doi.org/10.3390/polym11081250
  5. Lu C., Liu E., Sun Q., Shao Y. // Polymers. 2024. № 17. P. 2496. https://doi.org/10.3390/polym16172496
  6. Jang S., Oh J.H. // Sci Rep. 2018. V. 8. P. 1.
  7. Симбирцева Г.В., Бабенко С.Д., Кирюхин Д.П., Арбузов А.А. // Хим. физика. 2023. Т. 42. №1. С. 15. https://doi.org/10.31857/S0207401X23010119
  8. Роговина С.З., Гасымов М.М., Ломакин С.М. и др. // Хим. физика. 2023. Т. 42. № 11. С. 70. https://doi.org/10.31857/S0207401X23110080
  9. Marinho B., Ghislandi M., Tkalya E. et al. // Powder Technol. 2012. V. 221. P. 351. https://doi.org/10.1016/j.powtec.2012.01.024
  10. Симбирцева Г.В., Пивень Н.П., Бабенко С.Д. // Хим. физика. 2020. Т. 39. № 12. С. 60.
  11. Onggar T., Kruppke I., Cherif C. // Polymers. 2020. V. 12. № 12. P. 2867. https://doi.org/10.3390/polym12122867
  12. Radzuan N., Sulong A., Sahari J.// Intern. J. Hydrogen Energy. 2017. V. 42. № 14. P. 9262. https://doi.org/10.1016/j.ijhydene.2016.03.045
  13. Taherian R., Kausar A. Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling, and Applications. 2018. 418 p.
  14. Yang W., Gong Y., Li W. // Front. Bioeng. Biotechnol. 2020. V. 8. P. 622923.
  15. Vafaiee M., Ejehi F., Mohammadpour R. // Sci Rep. 2023. № 13. P. 370. https://doi.org/10.1038/s41598-023-27690-5
  16. Ward M.P., Rajdev P., Ellison C., Irazoqui P.P. // Brain Res. 2009. V. 1282. P. 183. https://doi.org/10.1016/j.brainres.2009.05.052
  17. Obidin N., Tasnim F., Dagdeviren C. // Adv. Mater. 2019. V. 32. № 15. P. 1901482. https://doi.org/10.1002/adma.201901482
  18. Patil A.C., Thakor N.V. // Med. Biol. Eng. Comput. 2016. V. 54. P. 23. https://doi.org/10.1007/s11517-015-1430-4
  19. Song E., Li J., Won S.M. et al. // Nat. Mater. 2020. V. 19. P. 590. https://doi.org/10.1038/s41563-020-0679-7
  20. Zhou Y., Burgoyne Morris G.H., Nair M. // Cell Rep. Phys. Sci. 2024. V. 5. № 8. P. 101852. https://doi.org/10.1016/j.xcrp.2024.101852
  21. Li Y., Ai Q., Mao L. et al. // Sci. Rep. 2021. V. 11. P. 21006.
  22. Аванесян В.Т., Пучков М.Ю. // Изв. РГПУ им. А.И. Герцена. 2009. № 95. С. 39.
  23. Лущейкин Г.А. // Методы исследования электрических свойств полимеров М.: Химия. 1998. 157 с.
  24. Van Krevelen D.V. Properties of Polymers: Correlations with Chemical Structure. Amsterdam: Elsevier, 1972.
  25. Blythe A.R. Electrical properties of Polymers. London B.Y.: Cambridge Univ. Press, 1980.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025