Tolstoy's Oval

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

In this article, the authors discuss what an oval is and what an ellipse is not only from the point of view of a mathematician, but also of a philologist. It is shown how to simply and elegantly construct these and other closed curves in the environment of the mathematical program SMath. The questions of transition curves for railroad transportation are touched upon.

Palavras-chave

Bibliografia

  1. SMath и Python: учебное пособие для вузов / В.Ф. Очков, К.А. Орлов, Ю. В. Чудова [и др.]. Санкт-Петербург: Лань. 2023. 212 с. (http://twt.mpei.ac.ru/ochkov/EC-SMath.pdf).
  2. Очков В.Ф., Нори М. Новый эллипс или Математический фарфоровый сервиз / Cloud of Science. Том 5. № 3. 2018. С. 240-267 (http://twt.mpei.ac.ru/ochkov/Tschirnhaus.pdf).
  3. Ochkov V., Nori M., Borovinskaya E., Reschetilowski W. A New Ellipse or Math Porcelain Service. Symmetry 2019, 11, 184 (https://www.mdpi.com/2073-8994/11/2/184).
  4. Ochkov V., Vasileva I., Borovinskaya E., Rechetilowski W. Approximation of Generalized Ovals and Lemniscates towards Geometric Modeling. Mathematics 2021, 9, 3325.
  5. Лев Толстой и математика / В.Ф. Очков, Н.А. Очкова. 3-е изд., испр. и доп. Москва: МПГУ, 2023. 208 с. (http://twt.mpei.ac.ru/ochkov/Tolstoy-Math-3.pdf).
  6. https://mathcurve.com/courbes2d.gb/cassini/cassini.shtml.
  7. https://blogs.ams.org/visualinsight/2016/11/15/bunimovich-stadium.
  8. В.Ф. Очков, Е.П. Богомолова, Д.А. Иванов, К. Писачич. Движения планет: расчёт и визуализация в среде Mathcad, или Часы Кеплера / Cloud of Science. 2015. T. 2. № 2 (http://www.twt.mpei.ac.ru/ochkov/Planets.pdf).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Издательство "Наука", 2024